From Curve Fitting to Machine Learning
Title | From Curve Fitting to Machine Learning PDF eBook |
Author | Achim Zielesny |
Publisher | Springer |
Pages | 498 |
Release | 2018-04-22 |
Genre | Computers |
ISBN | 9783319813134 |
This successful book provides in its second edition an interactive and illustrative guide from two-dimensional curve fitting to multidimensional clustering and machine learning with neural networks or support vector machines. Along the way topics like mathematical optimization or evolutionary algorithms are touched. All concepts and ideas are outlined in a clear cut manner with graphically depicted plausibility arguments and a little elementary mathematics.The major topics are extensively outlined with exploratory examples and applications. The primary goal is to be as illustrative as possible without hiding problems and pitfalls but to address them. The character of an illustrative cookbook is complemented with specific sections that address more fundamental questions like the relation between machine learning and human intelligence.All topics are completely demonstrated with the computing platform Mathematica and the Computational Intelligence Packages (CIP), a high-level function library developed with Mathematica's programming language on top of Mathematica's algorithms. CIP is open-source and the detailed code used throughout the book is freely accessible.The target readerships are students of (computer) science and engineering as well as scientific practitioners in industry and academia who deserve an illustrative introduction. Readers with programming skills may easily port or customize the provided code. "'From curve fitting to machine learning' is ... a useful book. ... It contains the basic formulas of curve fitting and related subjects and throws in, what is missing in so many books, the code to reproduce the results.All in all this is an interesting and useful book both for novice as well as expert readers. For the novice it is a good introductory book and the expert will appreciate the many examples and working code". Leslie A. Piegl (Review of the first edition, 2012).
From Curve Fitting to Machine Learning
Title | From Curve Fitting to Machine Learning PDF eBook |
Author | Achim Zielesny |
Publisher | Springer Science & Business Media |
Pages | 476 |
Release | 2011-07-28 |
Genre | Technology & Engineering |
ISBN | 3642212808 |
The analysis of experimental data is at heart of science from its beginnings. But it was the advent of digital computers that allowed the execution of highly non-linear and increasingly complex data analysis procedures - methods that were completely unfeasible before. Non-linear curve fitting, clustering and machine learning belong to these modern techniques which are a further step towards computational intelligence. The goal of this book is to provide an interactive and illustrative guide to these topics. It concentrates on the road from two dimensional curve fitting to multidimensional clustering and machine learning with neural networks or support vector machines. Along the way topics like mathematical optimization or evolutionary algorithms are touched. All concepts and ideas are outlined in a clear cut manner with graphically depicted plausibility arguments and a little elementary mathematics. The major topics are extensively outlined with exploratory examples and applications. The primary goal is to be as illustrative as possible without hiding problems and pitfalls but to address them. The character of an illustrative cookbook is complemented with specific sections that address more fundamental questions like the relation between machine learning and human intelligence. These sections may be skipped without affecting the main road but they will open up possibly interesting insights beyond the mere data massage. All topics are completely demonstrated with the aid of the commercial computing platform Mathematica and the Computational Intelligence Packages (CIP), a high-level function library developed with Mathematica's programming language on top of Mathematica's algorithms. CIP is open-source so the detailed code of every method is freely accessible. All examples and applications shown throughout the book may be used and customized by the reader without any restrictions. The target readerships are students of (computer) science and engineering as well as scientific practitioners in industry and academia who deserve an illustrative introduction to these topics. Readers with programming skills may easily port and customize the provided code.
Data-Driven Science and Engineering
Title | Data-Driven Science and Engineering PDF eBook |
Author | Steven L. Brunton |
Publisher | Cambridge University Press |
Pages | 615 |
Release | 2022-05-05 |
Genre | Computers |
ISBN | 1009098489 |
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Fitting Models to Biological Data Using Linear and Nonlinear Regression
Title | Fitting Models to Biological Data Using Linear and Nonlinear Regression PDF eBook |
Author | Harvey Motulsky |
Publisher | Oxford University Press |
Pages | 352 |
Release | 2004-05-27 |
Genre | Mathematics |
ISBN | 9780198038344 |
Most biologists use nonlinear regression more than any other statistical technique, but there are very few places to learn about curve-fitting. This book, by the author of the very successful Intuitive Biostatistics, addresses this relatively focused need of an extraordinarily broad range of scientists.
An Introduction to Causal Inference
Title | An Introduction to Causal Inference PDF eBook |
Author | Judea Pearl |
Publisher | Createspace Independent Publishing Platform |
Pages | 0 |
Release | 2015 |
Genre | Causation |
ISBN | 9781507894293 |
This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both. The tools are demonstrated in the analyses of mediation, causes of effects, and probabilities of causation. -- p. 1.
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
Title | Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow PDF eBook |
Author | Aurélien Géron |
Publisher | "O'Reilly Media, Inc." |
Pages | 851 |
Release | 2019-09-05 |
Genre | Computers |
ISBN | 149203259X |
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets
Introduction to Algorithms for Data Mining and Machine Learning
Title | Introduction to Algorithms for Data Mining and Machine Learning PDF eBook |
Author | Xin-She Yang |
Publisher | Academic Press |
Pages | 190 |
Release | 2019-06-17 |
Genre | Mathematics |
ISBN | 0128172177 |
Introduction to Algorithms for Data Mining and Machine Learning introduces the essential ideas behind all key algorithms and techniques for data mining and machine learning, along with optimization techniques. Its strong formal mathematical approach, well selected examples, and practical software recommendations help readers develop confidence in their data modeling skills so they can process and interpret data for classification, clustering, curve-fitting and predictions. Masterfully balancing theory and practice, it is especially useful for those who need relevant, well explained, but not rigorous (proofs based) background theory and clear guidelines for working with big data. Presents an informal, theorem-free approach with concise, compact coverage of all fundamental topics Includes worked examples that help users increase confidence in their understanding of key algorithms, thus encouraging self-study Provides algorithms and techniques that can be implemented in any programming language, with each chapter including notes about relevant software packages