Free Probability and Random Matrices
Title | Free Probability and Random Matrices PDF eBook |
Author | James A. Mingo |
Publisher | Springer |
Pages | 343 |
Release | 2017-06-24 |
Genre | Mathematics |
ISBN | 1493969420 |
This volume opens the world of free probability to a wide variety of readers. From its roots in the theory of operator algebras, free probability has intertwined with non-crossing partitions, random matrices, applications in wireless communications, representation theory of large groups, quantum groups, the invariant subspace problem, large deviations, subfactors, and beyond. This book puts a special emphasis on the relation of free probability to random matrices, but also touches upon the operator algebraic, combinatorial, and analytic aspects of the theory. The book serves as a combination textbook/research monograph, with self-contained chapters, exercises scattered throughout the text, and coverage of important ongoing progress of the theory. It will appeal to graduate students and all mathematicians interested in random matrices and free probability from the point of view of operator algebras, combinatorics, analytic functions, or applications in engineering and statistical physics.
Free Probability and Random Matrices
Title | Free Probability and Random Matrices PDF eBook |
Author | James A. Mingo |
Publisher | Springer |
Pages | 336 |
Release | 2017-06-26 |
Genre | Mathematics |
ISBN | 9781493969418 |
This volume opens the world of free probability to a wide variety of readers. From its roots in the theory of operator algebras, free probability has intertwined with non-crossing partitions, random matrices, applications in wireless communications, representation theory of large groups, quantum groups, the invariant subspace problem, large deviations, subfactors, and beyond. This book puts a special emphasis on the relation of free probability to random matrices, but also touches upon the operator algebraic, combinatorial, and analytic aspects of the theory. The book serves as a combination textbook/research monograph, with self-contained chapters, exercises scattered throughout the text, and coverage of important ongoing progress of the theory. It will appeal to graduate students and all mathematicians interested in random matrices and free probability from the point of view of operator algebras, combinatorics, analytic functions, or applications in engineering and statistical physics.
Introduction to Random Matrices
Title | Introduction to Random Matrices PDF eBook |
Author | Giacomo Livan |
Publisher | Springer |
Pages | 122 |
Release | 2018-01-16 |
Genre | Science |
ISBN | 3319708856 |
Modern developments of Random Matrix Theory as well as pedagogical approaches to the standard core of the discipline are surprisingly hard to find in a well-organized, readable and user-friendly fashion. This slim and agile book, written in a pedagogical and hands-on style, without sacrificing formal rigor fills this gap. It brings Ph.D. students in Physics, as well as more senior practitioners, through the standard tools and results on random matrices, with an eye on most recent developments that are not usually covered in introductory texts. The focus is mainly on random matrices with real spectrum.The main guiding threads throughout the book are the Gaussian Ensembles. In particular, Wigner’s semicircle law is derived multiple times to illustrate several techniques (e.g., Coulomb gas approach, replica theory).Most chapters are accompanied by Matlab codes (stored in an online repository) to guide readers through the numerical check of most analytical results.
An Introduction to Random Matrices
Title | An Introduction to Random Matrices PDF eBook |
Author | Greg W. Anderson |
Publisher | Cambridge University Press |
Pages | 507 |
Release | 2010 |
Genre | Mathematics |
ISBN | 0521194520 |
A rigorous introduction to the basic theory of random matrices designed for graduate students with a background in probability theory.
Random Matrices and Non-Commutative Probability
Title | Random Matrices and Non-Commutative Probability PDF eBook |
Author | Arup Bose |
Publisher | CRC Press |
Pages | 420 |
Release | 2021-10-26 |
Genre | Mathematics |
ISBN | 1000458822 |
This is an introductory book on Non-Commutative Probability or Free Probability and Large Dimensional Random Matrices. Basic concepts of free probability are introduced by analogy with classical probability in a lucid and quick manner. It then develops the results on the convergence of large dimensional random matrices, with a special focus on the interesting connections to free probability. The book assumes almost no prerequisite for the most part. However, familiarity with the basic convergence concepts in probability and a bit of mathematical maturity will be helpful. Combinatorial properties of non-crossing partitions, including the Möbius function play a central role in introducing free probability. Free independence is defined via free cumulants in analogy with the way classical independence can be defined via classical cumulants. Free cumulants are introduced through the Möbius function. Free product probability spaces are constructed using free cumulants. Marginal and joint tracial convergence of large dimensional random matrices such as the Wigner, elliptic, sample covariance, cross-covariance, Toeplitz, Circulant and Hankel are discussed. Convergence of the empirical spectral distribution is discussed for symmetric matrices. Asymptotic freeness results for random matrices, including some recent ones, are discussed in detail. These clarify the structure of the limits for joint convergence of random matrices. Asymptotic freeness of independent sample covariance matrices is also demonstrated via embedding into Wigner matrices. Exercises, at advanced undergraduate and graduate level, are provided in each chapter.
Lectures on the Combinatorics of Free Probability
Title | Lectures on the Combinatorics of Free Probability PDF eBook |
Author | Alexandru Nica |
Publisher | Cambridge University Press |
Pages | 430 |
Release | 2006-09-07 |
Genre | Mathematics |
ISBN | 0521858526 |
This 2006 book is a self-contained introduction to free probability theory suitable for an introductory graduate level course.
Random Matrices
Title | Random Matrices PDF eBook |
Author | Alexei Borodin |
Publisher | American Mathematical Soc. |
Pages | 513 |
Release | 2019-10-30 |
Genre | Education |
ISBN | 1470452804 |
Random matrix theory has many roots and many branches in mathematics, statistics, physics, computer science, data science, numerical analysis, biology, ecology, engineering, and operations research. This book provides a snippet of this vast domain of study, with a particular focus on the notations of universality and integrability. Universality shows that many systems behave the same way in their large scale limit, while integrability provides a route to describe the nature of those universal limits. Many of the ten contributed chapters address these themes, while others touch on applications of tools and results from random matrix theory. This book is appropriate for graduate students and researchers interested in learning techniques and results in random matrix theory from different perspectives and viewpoints. It also captures a moment in the evolution of the theory, when the previous decade brought major break-throughs, prompting exciting new directions of research.