Engineering Fundamentals and Environmental Effects
Title | Engineering Fundamentals and Environmental Effects PDF eBook |
Author | H. Liebowitz |
Publisher | Academic Press |
Pages | 774 |
Release | 2014-05-12 |
Genre | Technology & Engineering |
ISBN | 1483273644 |
Fracture: An Advanced Treatise, Volume III: Engineering Fundamentals and Environmental Effects provides information pertinent to the engineering fundamentals and environmental effects pertaining to various types of fracture. This book focuses on the fracture design of structures as well as the engineering fundamentals of fracture and environmental effects. Organized into 12 chapters, this volume begins with an overview of the analytical aspects of linear fracture mechanics, which are complete relative to basic formulation and two-dimensional static problems. This text then reviews the fundamental equations of the statics of solids, with emphasis on the idealization of behavior into elastic, plastic, or viscoelastic types. Other chapters consider a notch analysis of fracture. This book discusses as well the three phases of the fracture process. The final chapter deals with environment cracking under static load. This book is a valuable resource for engineers, students, and research workers in industrial organizations, education and research institutions, and various government agencies.
Fracture Mechanics
Title | Fracture Mechanics PDF eBook |
Author | E.E. Gdoutos |
Publisher | Springer Science & Business Media |
Pages | 319 |
Release | 2013-03-09 |
Genre | Science |
ISBN | 9401581584 |
New developments in the applications of fracture mechanics to engineering problems have taken place in the last years. Composite materials have extensively been used in engineering problems. Quasi-brittle materials including concrete, cement pastes, rock, soil, etc. all benefit from these developments. Layered materials and especially thin film/substrate systems are becoming important in small volume systems used in micro and nanoelectromechancial systems (MEMS and NEMS). Nanostructured materials are being introduced in our every day life. In all these problems fracture mechanics plays a major role for the prediction of failure and safe design of materials and structures. These new challenges motivated the author to proceed with the second edition of the book. The second edition of the book contains four new chapters in addition to the ten chapters of the first edition. The fourteen chapters of the book cover the basic principles and traditional applications, as well as the latest developments of fracture mechanics as applied to problems of composite materials, thin films, nanoindentation and cementitious materials. Thus the book provides an introductory coverage of the traditional and contemporary applications of fracture mechanics in problems of utmost technological importance. With the addition of the four new chapters the book presents a comprehensive treatment of fracture mechanics. It includes the basic principles and traditional applications as well as the new frontiers of research of fracture mechanics during the last three decades in topics of contemporary importance, like composites, thin films, nanoindentation and cementitious materials. The book contains fifty example problems and more than two hundred unsolved problems. A "Solutions Manual" is available upon request for course instructors from the author.
NASA Technical Note
Title | NASA Technical Note PDF eBook |
Author | |
Publisher | |
Pages | 516 |
Release | 1973 |
Genre | |
ISBN |
Fracture, an Advanced Treatise: Engineering fundamentals and environmental effects
Title | Fracture, an Advanced Treatise: Engineering fundamentals and environmental effects PDF eBook |
Author | Harold Liebowitz |
Publisher | |
Pages | |
Release | 1968 |
Genre | Fracture mechanics |
ISBN |
Nuclear Science Abstracts
Title | Nuclear Science Abstracts PDF eBook |
Author | |
Publisher | |
Pages | 1658 |
Release | 1971-04 |
Genre | Nuclear energy |
ISBN |
Fracture Mechanics Criteria and Applications
Title | Fracture Mechanics Criteria and Applications PDF eBook |
Author | E.E. Gdoutos |
Publisher | Springer Science & Business Media |
Pages | 326 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 9400919565 |
It is difficult to do justice to fracture mechanics in a textbook, for the subject encompasses so many disciplines. A general survey of the field would serve no purpose other than give a collection of references. The present book by Professor E. E. Gdoutos is refreshing because it does not fall into the esoteric tradition of outlining equations and results. Basic ideas and underlying principles are clearly explained as to how they are used in application. The presentations are concise and each topic can be understood by advanced undergraduates in material science and continuum mechanics. The book is highly recommended not only as a text in fracture mechanics but also as a reference to those interested in the general aspects of failure analysis. In addition to providing an in-depth review of the analytical methods for evaluating the fundamental quantities used in linear elastic fracture mechanics, various criteria are discussed re:O. ecting their limitations and applications. Par ticular emphases are given to predicting crack initiation, subcritical growth and the onset of rapid fracture from a single criterion. Those models in which it is assumed that the crack extends from tip to tip rely on the specific surface energy concept. The differences in the global and energy states before and after crack extension were associated with the energy required to create a unit area of crack surface. Applications were limited by the requirement of self-similar crack growth.
Time-Dependent Fracture Mechanics
Title | Time-Dependent Fracture Mechanics PDF eBook |
Author | Dominique P. Miannay |
Publisher | Springer Science & Business Media |
Pages | 480 |
Release | 2012-12-06 |
Genre | Technology & Engineering |
ISBN | 1461301556 |
Intended for engineers, researchers, and graduate students dealing with materials science, structural design, and nondestructive testing and evaluation, this book represents a continuation of the author's "Fracture Mechanics" (1997). It will appeal to a variety of audiences: The discussion of design codes and procedures will be of use to practicing engineers, particularly in the nuclear, aerospace, and pipeline industries; the extensive bibliography and discussion of recent results will make it a useful reference for academic researchers; and graduate students will find the clear explanations and worked examples useful for learning the field. The book begins with a general treatment of fracture mechanics in terms of material properties and loading and provides up-to-date reviews of the ductile-brittle transition in steels and of methods for analyzing the risk of fracture. It then discusses the dynamics of fracture and creep in homogeneous and isotropic media, including discussions of high-loading-rate characteristics, the behavior of stationary cracks in elastic media under stress, and the propagation of cracks in elastic media. This is followed by an analysis of creep and crack initiation and propagation, describing, for example, the morphology and incubation times of crack initiation and growth and the effects of high temperatures. The book concludes with treatments of cycling deformation and fatigue, creep-fatigue fractures, and crack initiation and propagation. Problems at the end of each chapter serve to reinforce and test the student's knowledge and to extend some of the discussions in the text. Solutions to half of the problems are provided.