Fourier Series in Several Variables with Applications to Partial Differential Equations
Title | Fourier Series in Several Variables with Applications to Partial Differential Equations PDF eBook |
Author | Victor Shapiro |
Publisher | CRC Press |
Pages | 352 |
Release | 2011-03-28 |
Genre | Mathematics |
ISBN | 1439854289 |
Fourier Series in Several Variables with Applications to Partial Differential Equations illustrates the value of Fourier series methods in solving difficult nonlinear partial differential equations (PDEs). Using these methods, the author presents results for stationary Navier-Stokes equations, nonlinear reaction-diffusion systems, and quasilinear e
Ordinary and Partial Differential Equations
Title | Ordinary and Partial Differential Equations PDF eBook |
Author | Ravi P. Agarwal |
Publisher | Springer Science & Business Media |
Pages | 422 |
Release | 2008-11-13 |
Genre | Mathematics |
ISBN | 0387791469 |
In this undergraduate/graduate textbook, the authors introduce ODEs and PDEs through 50 class-tested lectures. Mathematical concepts are explained with clarity and rigor, using fully worked-out examples and helpful illustrations. Exercises are provided at the end of each chapter for practice. The treatment of ODEs is developed in conjunction with PDEs and is aimed mainly towards applications. The book covers important applications-oriented topics such as solutions of ODEs in form of power series, special functions, Bessel functions, hypergeometric functions, orthogonal functions and polynomials, Legendre, Chebyshev, Hermite, and Laguerre polynomials, theory of Fourier series. Undergraduate and graduate students in mathematics, physics and engineering will benefit from this book. The book assumes familiarity with calculus.
Notes on Diffy Qs
Title | Notes on Diffy Qs PDF eBook |
Author | Jiri Lebl |
Publisher | |
Pages | 468 |
Release | 2019-11-13 |
Genre | |
ISBN | 9781706230236 |
Version 6.0. An introductory course on differential equations aimed at engineers. The book covers first order ODEs, higher order linear ODEs, systems of ODEs, Fourier series and PDEs, eigenvalue problems, the Laplace transform, and power series methods. It has a detailed appendix on linear algebra. The book was developed and used to teach Math 286/285 at the University of Illinois at Urbana-Champaign, and in the decade since, it has been used in many classrooms, ranging from small community colleges to large public research universities. See https: //www.jirka.org/diffyqs/ for more information, updates, errata, and a list of classroom adoptions.
Partial Differential Equations and Boundary-Value Problems with Applications
Title | Partial Differential Equations and Boundary-Value Problems with Applications PDF eBook |
Author | Mark A. Pinsky |
Publisher | American Mathematical Soc. |
Pages | 545 |
Release | 2011 |
Genre | Mathematics |
ISBN | 0821868896 |
Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.
Partial Differential Equations with Fourier Series and Boundary Value Problems
Title | Partial Differential Equations with Fourier Series and Boundary Value Problems PDF eBook |
Author | Nakhle H. Asmar |
Publisher | Courier Dover Publications |
Pages | 818 |
Release | 2017-03-23 |
Genre | Mathematics |
ISBN | 0486820831 |
Rich in proofs, examples, and exercises, this widely adopted text emphasizes physics and engineering applications. The Student Solutions Manual can be downloaded free from Dover's site; instructions for obtaining the Instructor Solutions Manual is included in the book. 2004 edition, with minor revisions.
Fourier Series and Numerical Methods for Partial Differential Equations
Title | Fourier Series and Numerical Methods for Partial Differential Equations PDF eBook |
Author | Richard Bernatz |
Publisher | John Wiley & Sons |
Pages | 336 |
Release | 2010-07-30 |
Genre | Mathematics |
ISBN | 0470651377 |
The importance of partial differential equations (PDEs) in modeling phenomena in engineering as well as in the physical, natural, and social sciences is well known by students and practitioners in these fields. Striking a balance between theory and applications, Fourier Series and Numerical Methods for Partial Differential Equations presents an introduction to the analytical and numerical methods that are essential for working with partial differential equations. Combining methodologies from calculus, introductory linear algebra, and ordinary differential equations (ODEs), the book strengthens and extends readers' knowledge of the power of linear spaces and linear transformations for purposes of understanding and solving a wide range of PDEs. The book begins with an introduction to the general terminology and topics related to PDEs, including the notion of initial and boundary value problems and also various solution techniques. Subsequent chapters explore: The solution process for Sturm-Liouville boundary value ODE problems and a Fourier series representation of the solution of initial boundary value problems in PDEs The concept of completeness, which introduces readers to Hilbert spaces The application of Laplace transforms and Duhamel's theorem to solve time-dependent boundary conditions The finite element method, using finite dimensional subspaces The finite analytic method with applications of the Fourier series methodology to linear version of non-linear PDEs Throughout the book, the author incorporates his own class-tested material, ensuring an accessible and easy-to-follow presentation that helps readers connect presented objectives with relevant applications to their own work. Maple is used throughout to solve many exercises, and a related Web site features Maple worksheets for readers to use when working with the book's one- and multi-dimensional problems. Fourier Series and Numerical Methods for Partial Differential Equations is an ideal book for courses on applied mathematics and partial differential equations at the upper-undergraduate and graduate levels. It is also a reliable resource for researchers and practitioners in the fields of mathematics, science, and engineering who work with mathematical modeling of physical phenomena, including diffusion and wave aspects.
Mathematical Physics with Partial Differential Equations
Title | Mathematical Physics with Partial Differential Equations PDF eBook |
Author | James Kirkwood |
Publisher | Academic Press |
Pages | 431 |
Release | 2012-01-20 |
Genre | Mathematics |
ISBN | 0123869110 |
Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.