Fourier Restriction, Decoupling, and Applications
Title | Fourier Restriction, Decoupling, and Applications PDF eBook |
Author | Ciprian Demeter |
Publisher | Cambridge University Press |
Pages | 349 |
Release | 2020-01-02 |
Genre | Mathematics |
ISBN | 1108603610 |
The last fifteen years have seen a flurry of exciting developments in Fourier restriction theory, leading to significant new applications in diverse fields. This timely text brings the reader from the classical results to state-of-the-art advances in multilinear restriction theory, the Bourgain–Guth induction on scales and the polynomial method. Also discussed in the second part are decoupling for curved manifolds and a wide variety of applications in geometric analysis, PDEs (Strichartz estimates on tori, local smoothing for the wave equation) and number theory (exponential sum estimates and the proof of the Main Conjecture for Vinogradov's Mean Value Theorem). More than 100 exercises in the text help reinforce these important but often difficult ideas, making it suitable for graduate students as well as specialists. Written by an author at the forefront of the modern theory, this book will be of interest to everybody working in harmonic analysis.
Recent Developments in Harmonic Analysis and its Applications
Title | Recent Developments in Harmonic Analysis and its Applications PDF eBook |
Author | Shaoming Guo |
Publisher | American Mathematical Society |
Pages | 182 |
Release | 2024-01-24 |
Genre | Mathematics |
ISBN | 147047140X |
This volume contains the proceedings of the virtual AMS Special Session on Harmonic Analysis, held from March 26–27, 2022. Harmonic analysis has gone through rapid developments in the past decade. New tools, including multilinear Kakeya inequalities, broad-narrow analysis, polynomial methods, decoupling inequalities, and refined Strichartz inequalities, are playing a crucial role in resolving problems that were previously considered out of reach. A large number of important works in connection with geometric measure theory, analytic number theory, partial differential equations, several complex variables, etc., have appeared in the last few years. This book collects some examples of this work.
Polynomial Methods and Incidence Theory
Title | Polynomial Methods and Incidence Theory PDF eBook |
Author | Adam Sheffer |
Publisher | Cambridge University Press |
Pages | 264 |
Release | 2022-03-24 |
Genre | Mathematics |
ISBN | 1108963013 |
The past decade has seen numerous major mathematical breakthroughs for topics such as the finite field Kakeya conjecture, the cap set conjecture, Erdős's distinct distances problem, the joints problem, as well as others, thanks to the introduction of new polynomial methods. There has also been significant progress on a variety of problems from additive combinatorics, discrete geometry, and more. This book gives a detailed yet accessible introduction to these new polynomial methods and their applications, with a focus on incidence theory. Based on the author's own teaching experience, the text requires a minimal background, allowing graduate and advanced undergraduate students to get to grips with an active and exciting research front. The techniques are presented gradually and in detail, with many examples, warm-up proofs, and exercises included. An appendix provides a quick reminder of basic results and ideas.
Toeplitz Matrices and Operators
Title | Toeplitz Matrices and Operators PDF eBook |
Author | Nikolaï Nikolski |
Publisher | Cambridge University Press |
Pages | 453 |
Release | 2020-01-02 |
Genre | Mathematics |
ISBN | 110719850X |
A friendly introduction to Toeplitz theory and its applications throughout modern functional analysis.
Foundations of Stable Homotopy Theory
Title | Foundations of Stable Homotopy Theory PDF eBook |
Author | David Barnes |
Publisher | Cambridge University Press |
Pages | 432 |
Release | 2020-03-26 |
Genre | Mathematics |
ISBN | 1108672671 |
The beginning graduate student in homotopy theory is confronted with a vast literature on spectra that is scattered across books, articles and decades. There is much folklore but very few easy entry points. This comprehensive introduction to stable homotopy theory changes that. It presents the foundations of the subject together in one place for the first time, from the motivating phenomena to the modern theory, at a level suitable for those with only a first course in algebraic topology. Starting from stable homotopy groups and (co)homology theories, the authors study the most important categories of spectra and the stable homotopy category, before moving on to computational aspects and more advanced topics such as monoidal structures, localisations and chromatic homotopy theory. The appendix containing essential facts on model categories, the numerous examples and the suggestions for further reading make this a friendly introduction to an often daunting subject.
The Character Theory of Finite Groups of Lie Type
Title | The Character Theory of Finite Groups of Lie Type PDF eBook |
Author | Meinolf Geck |
Publisher | Cambridge University Press |
Pages | 406 |
Release | 2020-02-27 |
Genre | Mathematics |
ISBN | 1108808905 |
Through the fundamental work of Deligne and Lusztig in the 1970s, further developed mainly by Lusztig, the character theory of reductive groups over finite fields has grown into a rich and vast area of mathematics. It incorporates tools and methods from algebraic geometry, topology, combinatorics and computer algebra, and has since evolved substantially. With this book, the authors meet the need for a contemporary treatment, complementing in core areas the well-established books of Carter and Digne–Michel. Focusing on applications in finite group theory, the authors gather previously scattered results and allow the reader to get to grips with the large body of literature available on the subject, covering topics such as regular embeddings, the Jordan decomposition of characters, d-Harish–Chandra theory and Lusztig induction for unipotent characters. Requiring only a modest background in algebraic geometry, this useful reference is suitable for beginning graduate students as well as researchers.
Higher Index Theory
Title | Higher Index Theory PDF eBook |
Author | Rufus Willett |
Publisher | Cambridge University Press |
Pages | 595 |
Release | 2020-07-02 |
Genre | Mathematics |
ISBN | 1108491065 |
A friendly introduction to higher index theory, a rapidly-developing subject at the intersection of geometry, topology and operator algebras. A well-balanced combination of introductory material (with exercises), cutting-edge developments and references to the wider literature make this book a valuable guide for graduate students and experts alike.