Flat Level Set Regularity of $p$-Laplace Phase Transitions
Title | Flat Level Set Regularity of $p$-Laplace Phase Transitions PDF eBook |
Author | Enrico Valdinoci |
Publisher | American Mathematical Soc. |
Pages | 158 |
Release | 2006 |
Genre | Mathematics |
ISBN | 0821839101 |
We prove a Harnack inequality for level sets of $p$-Laplace phase transition minimizers. In particular, if a level set is included in a flat cylinder, then, in the interior, it is included in a flatter one. The extension of a result conjectured by De Giorgi and recently proven by the third author for $p=2$ follows.
Handbook of Differential Equations: Stationary Partial Differential Equations
Title | Handbook of Differential Equations: Stationary Partial Differential Equations PDF eBook |
Author | Michel Chipot |
Publisher | Elsevier |
Pages | 627 |
Release | 2007-05-03 |
Genre | Mathematics |
ISBN | 0080521835 |
A collection of self contained state-of-the art surveys. The authors have made an effort to achieve readability for mathematicians and scientists from other fields, for this series of handbooks to be a new reference for research, learning and teaching.- written by well-known experts in the field- self contained volume in series covering one of the most rapid developing topics in mathematics
Dissipative Phase Transitions
Title | Dissipative Phase Transitions PDF eBook |
Author | Pierluigi Colli |
Publisher | World Scientific |
Pages | 321 |
Release | 2006 |
Genre | Science |
ISBN | 9812774297 |
Phase transition phenomena arise in a variety of relevant real world situations, such as melting and freezing in a solid-liquid system, evaporation, solid-solid phase transitions in shape memory alloys, combustion, crystal growth, damage in elastic materials, glass formation, phase transitions in polymers, and plasticity. The practical interest of such phenomenology is evident and has deeply influenced the technological development of our society, stimulating intense mathematical research in this area. This book analyzes and approximates some models and related partial differential equation problems that involve phase transitions in different contexts and include dissipation effects. Contents: Mathematical Models Including a Hysteresis Operator (T Aiki); Modelling Phase Transitions via an Entropy Equation: Long-Time Behavior of the Solutions (E Bonetti); Global Solution to a One Dimensional Phase Transition Model with Strong Dissipation (G Bonfanti & F Luterotti); A Global in Time Result for an Integro-Differential Parabolic Inverse Problem in the Space of Bounded Functions (F Colombo et al.); Weak Solutions for Stefan Problems with Convections (T Fukao); Memory Relaxation of the One-Dimensional CahnOCoHilliard Equation (S Gatti et al.); Mathematical Models for Phase Transition in Materials with Thermal Memory (G Gentili & C Giorgi); Hysteresis in a First Order Hyperbolic Equation (J Kopfovi); Approximation of Inverse Problems Related to Parabolic Integro-Differential Systems of Caginalp Type (A Lorenzi & E Rocca); Gradient Flow Reaction/Diffusion Models in Phase Transitions (J Norbury & C Girardet); New Existence Result for a 3-D Shape Memory Model (I Pawlow & W M Zajaczkowski); Analysis of a 1-D Thermoviscoelastic Model with Temperature-Dependent Viscosity (R Peyroux & U Stefanelli); Global Attractor for the Weak Solutions of a Class of Viscous Cahn-Hilliard Equations (R Rossi); Stability for Phase Field Systems Involving Indefinite Surface Tension Coefficients (K Shirakawa); Geometric Features of p -Laplace Phase Transitions (E Valdinoci). Readership: Applied mathematicians and researchers in analysis and differential equations."
Recent Progress on Reaction-diffusion Systems and Viscosity Solutions
Title | Recent Progress on Reaction-diffusion Systems and Viscosity Solutions PDF eBook |
Author | Yihong Du |
Publisher | World Scientific |
Pages | 373 |
Release | 2009 |
Genre | Mathematics |
ISBN | 9812834745 |
This book consists of survey and research articles expanding on the theme of the OC International Conference on Reaction-Diffusion Systems and Viscosity SolutionsOCO, held at Providence University, Taiwan, during January 3OCo6, 2007. It is a carefully selected collection of articles representing the recent progress of some important areas of nonlinear partial differential equations. The book is aimed for researchers and postgraduate students who want to learn about or follow some of the current research topics in nonlinear partial differential equations. The contributors consist of international experts and some participants of the conference, including Nils Ackermann (Mexico), Chao-Nien Chen (Taiwan), Yihong Du (Australia), Alberto Farina (France), Hitoshi Ishii (Japan), N Ishimura (Japan), Shigeaki Koike (Japan), Chu-Pin Lo (Taiwan), Peter Polacik (USA), Kunimochi Sakamoto (Japan), Richard Tsai (USA), Mingxin Wang (China), Yoshio Yamada (Japan), Eiji Yanagida (Japan), and Xiao-Qiang Zhao (Canada).
Geometric Methods in PDE’s
Title | Geometric Methods in PDE’s PDF eBook |
Author | Giovanna Citti |
Publisher | Springer |
Pages | 381 |
Release | 2015-10-31 |
Genre | Mathematics |
ISBN | 3319026666 |
The analysis of PDEs is a prominent discipline in mathematics research, both in terms of its theoretical aspects and its relevance in applications. In recent years, the geometric properties of linear and nonlinear second order PDEs of elliptic and parabolic type have been extensively studied by many outstanding researchers. This book collects contributions from a selected group of leading experts who took part in the INdAM meeting "Geometric methods in PDEs", on the occasion of the 70th birthday of Ermanno Lanconelli. They describe a number of new achievements and/or the state of the art in their discipline of research, providing readers an overview of recent progress and future research trends in PDEs. In particular, the volume collects significant results for sub-elliptic equations, potential theory and diffusion equations, with an emphasis on comparing different methodologies and on their implications for theory and applications.
Flat Level Set Regularity of P-Laplace Phase Transitions
Title | Flat Level Set Regularity of P-Laplace Phase Transitions PDF eBook |
Author | Enrico Valdinoci |
Publisher | American Mathematical Society(RI) |
Pages | 144 |
Release | 2014-09-11 |
Genre | Electronic books |
ISBN | 9781470404628 |
We prove a Harnack inequality for level sets of $p$-Laplace phase transition minimizers. In particular, if a level set is included in a flat cylinder, then, in the interior, it is included in a flatter one. The extension of a result conjectured by De Giorgi and recently proven by the third author for $p=2$ follows.
Borel Liftings of Borel Sets: Some Decidable and Undecidable Statements
Title | Borel Liftings of Borel Sets: Some Decidable and Undecidable Statements PDF eBook |
Author | Gabriel Debs |
Publisher | American Mathematical Soc. |
Pages | 134 |
Release | 2007 |
Genre | Mathematics |
ISBN | 0821839713 |
One of the aims of this work is to investigate some natural properties of Borel sets which are undecidable in $ZFC$. The authors' starting point is the following elementary, though non-trivial result: Consider $X \subset 2omega\times2omega$, set $Y=\pi(X)$, where $\pi$ denotes the canonical projection of $2omega\times2omega$ onto the first factor, and suppose that $(\star)$: Any compact subset of $Y$ is the projection of some compact subset of $X$. If moreover $X$ is $\mathbf{\Pi 0 2$ then $(\star\star)$: The restriction of $\pi$ to some relatively closed subset of $X$ is perfect onto $Y$ it follows that in the present case $Y$ is also $\mathbf{\Pi 0 2$. Notice that the reverse implication $(\star\star)\Rightarrow(\star)$ holds trivially for any $X$ and $Y$. But the implication $(\star)\Rightarrow (\star\star)$ for an arbitrary Borel set $X \subset 2omega\times2omega$ is equivalent to the statement $\forall \alpha\in \omegaomega, \, \aleph 1$ is inaccessible in $L(\alpha)$. More precisely The authors prove that the validity of $(\star)\Rightarrow(\star\star)$ for all $X \in \varSigma0 {1+\xi+1 $, is equivalent to $\aleph \xi \aleph 1$. $ZFC$, derive from $(\star)$ the weaker conclusion that $Y$ is also Borel and of the same Baire class as $X$. This last result solves an old problem about compact covering mappings. In fact these results are closely related to the following general boundedness principle Lift$(X, Y)$: If any compact subset of $Y$ admits a continuous lifting in $X$, then $Y$ admits a continuous lifting in $X$, where by a lifting of $Z\subset \pi(X)$ in $X$ we mean a mapping on $Z$ whose graph is contained in $X$. The main result of this work will give the exact set theoretical strength of this principle depending on the descriptive complexity of $X$ and $Y$. The authors also prove a similar result for a variation of Lift$(X, Y)$ in which continuous liftings are replaced by Borel liftings, and which answers a question of H. Friedman. Among other applications the authors obtain a complete solution to a problem which goes back to Lusin concerning the existence of $\mathbf{\Pi 1 1$ sets with all constituents in some given class $\mathbf{\Gamma $ of Borel sets, improving earlier results by J. Stern and R. Sami. Borel sets (in $ZFC$) of a new type, involving a large amount of abstract algebra. This representation was initially developed for the purposes of this proof, but has several other applications.