Finite Order Automorphisms and Real Forms of Affine Kac-Moody Algebras in the Smooth and Algebraic Category

Finite Order Automorphisms and Real Forms of Affine Kac-Moody Algebras in the Smooth and Algebraic Category
Title Finite Order Automorphisms and Real Forms of Affine Kac-Moody Algebras in the Smooth and Algebraic Category PDF eBook
Author Ernst Heintze
Publisher American Mathematical Soc.
Pages 81
Release 2012
Genre Mathematics
ISBN 0821869183

Download Finite Order Automorphisms and Real Forms of Affine Kac-Moody Algebras in the Smooth and Algebraic Category Book in PDF, Epub and Kindle

Heintze and Gross discuss isomorphisms between smooth loop algebras and of smooth affine Kac-Moody algebras in particular, and automorphisms of the first and second kinds of finite order. Then they consider involutions of the first and second kind, and make the algebraic case. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com).

Classification and Structure Theory of Lie Algebras of Smooth Sections

Classification and Structure Theory of Lie Algebras of Smooth Sections
Title Classification and Structure Theory of Lie Algebras of Smooth Sections PDF eBook
Author Hasan Gündoğan
Publisher Logos Verlag Berlin GmbH
Pages 172
Release 2011
Genre Mathematics
ISBN 383253024X

Download Classification and Structure Theory of Lie Algebras of Smooth Sections Book in PDF, Epub and Kindle

Lie groups and their "derived objects", Lie algebras, appear in various fields of mathematics and physics. At least since the beginning of the 20th century, and after the famous works of Wilhelm Killing, Elie Cartan, Eugenio Elia Levi, Anatoly Malcev and Igor Ado on the structure of finite-dimensional Lie algebras, the classification and structure theory of infinite-dimensional Lie algebras has become an interesting and fairly vast field of interest. This dissertation focusses on the structure of Lie algebras of smooth and k-times differentiable sections of finite-dimensional Lie algebra bundles, which are generalizations of the famous and well-understood affine Kac-Moody algebras. Besides answering the immediate structural questions (center, commutator algebra, derivations, centroid, automorphism group), this work approaches a classification of section algebras by homotopy theory. Furthermore, we determine a universal invariant symmetric bilinear form on Lie algebras of smooth sections and use this form to define a natural central extension which is universal, at least in the case of Lie algebra bundles with compact base manifold.

Zeta Functions for Two-Dimensional Shifts of Finite Type

Zeta Functions for Two-Dimensional Shifts of Finite Type
Title Zeta Functions for Two-Dimensional Shifts of Finite Type PDF eBook
Author Jung-Chao Ban
Publisher American Mathematical Soc.
Pages 72
Release 2013-01-25
Genre Mathematics
ISBN 0821872907

Download Zeta Functions for Two-Dimensional Shifts of Finite Type Book in PDF, Epub and Kindle

This work is concerned with zeta functions of two-dimensional shifts of finite type. A two-dimensional zeta function $\zeta^{0}(s)$, which generalizes the Artin-Mazur zeta function, was given by Lind for $\mathbb{Z}^{2}$-action $\phi$. In this paper, the $n$th-order zeta function $\zeta_{n}$ of $\phi$ on $\mathbb{Z}_{n\times \infty}$, $n\geq 1$, is studied first. The trace operator $\mathbf{T}_{n}$, which is the transition matrix for $x$-periodic patterns with period $n$ and height $2$, is rotationally symmetric. The rotational symmetry of $\mathbf{T}_{n}$ induces the reduced trace operator $\tau_{n}$ and $\zeta_{n}=\left(\det\left(I-s^{n}\tau_{n}\right)\right)^{-1}$. The zeta function $\zeta=\prod_{n=1}^{\infty} \left(\det\left(I-s^{n}\tau_{n}\right)\right)^{-1}$ in the $x$-direction is now a reciprocal of an infinite product of polynomials. The zeta function can be presented in the $y$-direction and in the coordinates of any unimodular transformation in $GL_{2}(\mathbb{Z})$. Therefore, there exists a family of zeta functions that are meromorphic extensions of the same analytic function $\zeta^{0}(s)$. The natural boundary of zeta functions is studied. The Taylor series for these zeta functions at the origin are equal with integer coefficients, yielding a family of identities, which are of interest in number theory. The method applies to thermodynamic zeta functions for the Ising model with finite range interactions.

Character Identities in the Twisted Endoscopy of Real Reductive Groups

Character Identities in the Twisted Endoscopy of Real Reductive Groups
Title Character Identities in the Twisted Endoscopy of Real Reductive Groups PDF eBook
Author Paul Mezo
Publisher American Mathematical Soc.
Pages 106
Release 2013-02-26
Genre Mathematics
ISBN 0821875655

Download Character Identities in the Twisted Endoscopy of Real Reductive Groups Book in PDF, Epub and Kindle

Suppose $G$ is a real reductive algebraic group, $\theta$ is an automorphism of $G$, and $\omega$ is a quasicharacter of the group of real points $G(\mathbf{R})$. Under some additional assumptions, the theory of twisted endoscopy associates to this triple real reductive groups $H$. The Local Langlands Correspondence partitions the admissible representations of $H(\mathbf{R})$ and $G(\mathbf{R})$ into $L$-packets. The author proves twisted character identities between $L$-packets of $H(\mathbf{R})$ and $G(\mathbf{R})$ comprised of essential discrete series or limits of discrete series.

Kuznetsov's Trace Formula and the Hecke Eigenvalues of Maass Forms

Kuznetsov's Trace Formula and the Hecke Eigenvalues of Maass Forms
Title Kuznetsov's Trace Formula and the Hecke Eigenvalues of Maass Forms PDF eBook
Author Andrew Knightly
Publisher American Mathematical Soc.
Pages 144
Release 2013-06-28
Genre Mathematics
ISBN 0821887440

Download Kuznetsov's Trace Formula and the Hecke Eigenvalues of Maass Forms Book in PDF, Epub and Kindle

The authors give an adelic treatment of the Kuznetsov trace formula as a relative trace formula on $\operatorname{GL}(2)$ over $\mathbf{Q}$. The result is a variant which incorporates a Hecke eigenvalue in addition to two Fourier coefficients on the spectral side. The authors include a proof of a Weil bound for the generalized twisted Kloosterman sums which arise on the geometric side. As an application, they show that the Hecke eigenvalues of Maass forms at a fixed prime, when weighted as in the Kuznetsov formula, become equidistributed relative to the Sato-Tate measure in the limit as the level goes to infinity.

Elliptic Partial Differential Equations with Almost-Real Coefficients

Elliptic Partial Differential Equations with Almost-Real Coefficients
Title Elliptic Partial Differential Equations with Almost-Real Coefficients PDF eBook
Author Ariel Barton
Publisher American Mathematical Soc.
Pages 120
Release 2013-04-22
Genre Mathematics
ISBN 0821887408

Download Elliptic Partial Differential Equations with Almost-Real Coefficients Book in PDF, Epub and Kindle

In this monograph the author investigates divergence-form elliptic partial differential equations in two-dimensional Lipschitz domains whose coefficient matrices have small (but possibly nonzero) imaginary parts and depend only on one of the two coordinates. He shows that for such operators, the Dirichlet problem with boundary data in $L^q$ can be solved for $q1$ small enough, and provide an endpoint result at $p=1$.

Hopf Algebras and Congruence Subgroups

Hopf Algebras and Congruence Subgroups
Title Hopf Algebras and Congruence Subgroups PDF eBook
Author Yorck Sommerhäuser
Publisher American Mathematical Soc.
Pages 146
Release 2012
Genre Mathematics
ISBN 0821869132

Download Hopf Algebras and Congruence Subgroups Book in PDF, Epub and Kindle

We prove that the kernel of the action of the modular group on the center of a semisimple factorizable Hopf algebra is a congruence subgroup whenever this action is linear. If the action is only projective, we show that the projective kernel is a congruence subgroup. To do this, we introduce a class of generalized Frobenius-Schur indicators and endow it with an action of the modular group that is compatible with the original one.