The Finite Element Method in Electromagnetics
Title | The Finite Element Method in Electromagnetics PDF eBook |
Author | Jian-Ming Jin |
Publisher | John Wiley & Sons |
Pages | 728 |
Release | 2015-02-18 |
Genre | Science |
ISBN | 1118842022 |
A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The Finite Element Method in Electromagnetics, Third Edition explains the method’s processes and techniques in careful, meticulous prose and covers not only essential finite element method theory, but also its latest developments and applications—giving engineers a methodical way to quickly master this very powerful numerical technique for solving practical, often complicated, electromagnetic problems. Featuring over thirty percent new material, the third edition of this essential and comprehensive text now includes: A wider range of applications, including antennas, phased arrays, electric machines, high-frequency circuits, and crystal photonics The finite element analysis of wave propagation, scattering, and radiation in periodic structures The time-domain finite element method for analysis of wideband antennas and transient electromagnetic phenomena Novel domain decomposition techniques for parallel computation and efficient simulation of large-scale problems, such as phased-array antennas and photonic crystals Along with a great many examples, The Finite Element Method in Electromagnetics is an ideal book for engineering students as well as for professionals in the field.
Finite Elements for Wave Electromagnetics
Title | Finite Elements for Wave Electromagnetics PDF eBook |
Author | IEEE Antennas and Propagation Society |
Publisher | Institute of Electrical & Electronics Engineers(IEEE) |
Pages | 560 |
Release | 1994 |
Genre | Mathematics |
ISBN |
Introduction to the Finite Element Method in Electromagnetics
Title | Introduction to the Finite Element Method in Electromagnetics PDF eBook |
Author | Anastasis C. Polycarpou |
Publisher | Morgan & Claypool Publishers |
Pages | 127 |
Release | 2006 |
Genre | Boundary value problems |
ISBN | 1598290460 |
"This is an introduction to the finite element method with applications in electromagnetics. Author Anastasis Polycarpou begins with the basics of the method, including formulating a boundary-value problem using a weighted-residual method and the Galerkin approach, followed by the imposition of all three types of boundary conditions, including absorbing boundary conditions. Another important topic of emphasis is the development of shape functions including those of higher order. This book provides the reader with all information necessary to apply the finite element method to one- and two-dimensional boundary-value problems in electromagnetics."--BOOK JACKET.
Finite Element Method Electromagnetics
Title | Finite Element Method Electromagnetics PDF eBook |
Author | John L. Volakis |
Publisher | John Wiley & Sons |
Pages | 364 |
Release | 1998-06-15 |
Genre | Science |
ISBN | 9780780334250 |
Employed in a large number of commercial electromagnetic simulation packages, the finite element method is one of the most popular and well-established numerical techniques in engineering. This book covers the theory, development, implementation, and application of the finite element method and its hybrid versions to electromagnetics. FINITE ELEMENT METHOD FOR ELECTROMAGNETICS begins with a step-by-step textbook presentation of the finite method and its variations then goes on to provide up-to-date coverage of three dimensional formulations and modern applications to open and closed domain problems. Worked out examples are included to aid the reader with the fine features of the method and the implementation of its hybridization with other techniques for a robust simulation of large scale radiation and scattering. The crucial treatment of local boundary conditions is carefully worked out in several stages in the book. Sponsored by: IEEE Antennas and Propagation Society.
Quick Finite Elements for Electromagnetic Waves
Title | Quick Finite Elements for Electromagnetic Waves PDF eBook |
Author | Giuseppe Pelosi |
Publisher | Artech House |
Pages | 311 |
Release | 2009 |
Genre | Science |
ISBN | 1596933461 |
The classic 1998 Artech House book, Quick Finite Elements for Electromagnetic Waves, has now been revised and expanded to bring you up-to-date with the latest developments in the Field. You find brand new discussions on finite elements in 3D, 3D resonant cavities, and 3D waveguide devices. Moreover, the second edition supplies you with MATLAB code, making this resource easier to comprehend and use for your projects in the field. This practical book and accompanying software enables you to quickly and easily work out challenging microwave engineering and high-frequency electromagnetic problems using the finite element method (FEM). Using clear, concise text and dozens of real-world application examples, the book provides a detailed description of FEM implementation, while the software provides the code and tools needed to solve the three major types of EM problems: guided propagation, scattering, and radiation. With this unique book and software set in hand, you can compute the dispersion diagram of arbitrarily shaped inhomogeneous isotropic lossless or lossy guiding structures, analyze E- and H-plane waveguide discontinuities and devices, and understand the reflection from and transmission through simple 2D and 3D inhomogeneous periodic structures. CD-ROM Included! Easy-to-use finite element software contains ready-made MATLAB and FORTRAN source code that you can use immediately to solve a wide range of microwave and EM problems. The package is fully compatible with Internet "freeware, " so you can perform advanced engineering functions without having to purchase expensive pre- and post-processing tools.
Field Solutions on Computers
Title | Field Solutions on Computers PDF eBook |
Author | Stanley Humphries, Jr. |
Publisher | CRC Press |
Pages | 400 |
Release | 2020-09-23 |
Genre | Technology & Engineering |
ISBN | 1000102106 |
Field Solutions on Computers covers a broad range of practical applications involving electric and magnetic fields. The text emphasizes finite-element techniques to solve real-world problems in research and industry. After introducing numerical methods with a thorough treatment of electrostatics, the book moves in a structured sequence to advanced topics. These include magnetostatics with non-linear materials, permanent magnet devices, RF heating, eddy current analysis, electromagnetic pulses, microwave structures, and wave scattering. The mathematical derivations are supplemented with chapter exercises and comprehensive reviews of the underlying physics. The book also covers essential supporting techniques such as mesh generation, interpolation, sparse matrix inversions, and advanced plotting routines.
Essentials of Computational Electromagnetics
Title | Essentials of Computational Electromagnetics PDF eBook |
Author | Xin-Qing Sheng |
Publisher | John Wiley & Sons |
Pages | 291 |
Release | 2012-03-22 |
Genre | Science |
ISBN | 0470829656 |
Essentials of Computational Electromagnetics provides an in-depth introduction of the three main full-wave numerical methods in computational electromagnetics (CEM); namely, the method of moment (MoM), the finite element method (FEM), and the finite-difference time-domain (FDTD) method. Numerous monographs can be found addressing one of the above three methods. However, few give a broad general overview of essentials embodied in these methods, or were published too early to include recent advances. Furthermore, many existing monographs only present the final numerical results without specifying practical issues, such as how to convert discretized formulations into computer programs, and the numerical characteristics of the computer programs. In this book, the authors elaborate the above three methods in CEM using practical case studies, explaining their own research experiences along with a review of current literature. A full analysis is provided for typical cases, including characteristics of numerical methods, helping beginners to develop a quick and deep understanding of the essentials of CEM. Outlines practical issues, such as how to convert discretized formulations into computer programs Gives typical computer programs and their numerical characteristics along with line by line explanations of programs Uses practical examples from the authors' own work as well as in the current literature Includes exercise problems to give readers a better understanding of the material Introduces the available commercial software and their limitations This book is intended for graduate-level students in antennas and propagation, microwaves, microelectronics, and electromagnetics. This text can also be used by researchers in electrical and electronic engineering, and software developers interested in writing their own code or understanding the detailed workings of code. Companion website for the book: www.wiley.com/go/sheng/cem