Finite Element Analysis of Composite Materials using AbaqusTM
Title | Finite Element Analysis of Composite Materials using AbaqusTM PDF eBook |
Author | Ever J. Barbero |
Publisher | CRC Press |
Pages | 445 |
Release | 2013-04-18 |
Genre | Mathematics |
ISBN | 1466516631 |
Developed from the author's graduate-level course on advanced mechanics of composite materials, Finite Element Analysis of Composite Materials with Abaqus shows how powerful finite element tools address practical problems in the structural analysis of composites. Unlike other texts, this one takes the theory to a hands-on level by actually solving
Analysis of Composite Materials
Title | Analysis of Composite Materials PDF eBook |
Author | Mehmet Ali Arslan |
Publisher | |
Pages | 426 |
Release | 2020-02-20 |
Genre | |
ISBN | 9780999200506 |
Analysis of Composite Materials - Application with ANSYS is truly an extraordinary book written with the true commitment of filling up the huge experience/knowledge gap between the theory and application of composites to tackle real-life engineering problems with success. This book teaches students both practical/effective use of analytical formulas and step by step computer-based problem solutions using applied finite element analysis. For this purpose, this book is specially designed as a reference-analysis book for mechanical, aeronautical, mechatronics, biomedical and civil engineering students who are focusing on stress/strain, heat transfer analysis, and vibration characteristics of the composite structures of their interest.
ANSYS Mechanical APDL for Finite Element Analysis
Title | ANSYS Mechanical APDL for Finite Element Analysis PDF eBook |
Author | Mary Kathryn Thompson |
Publisher | Butterworth-Heinemann |
Pages | 467 |
Release | 2017-07-28 |
Genre | Technology & Engineering |
ISBN | 0128131101 |
ANSYS Mechanical APDL for Finite Element Analysis provides a hands-on introduction to engineering analysis using one of the most powerful commercial general purposes finite element programs on the market. Students will find a practical and integrated approach that combines finite element theory with best practices for developing, verifying, validating and interpreting the results of finite element models, while engineering professionals will appreciate the deep insight presented on the program's structure and behavior. Additional topics covered include an introduction to commands, input files, batch processing, and other advanced features in ANSYS. The book is written in a lecture/lab style, and each topic is supported by examples, exercises and suggestions for additional readings in the program documentation. Exercises gradually increase in difficulty and complexity, helping readers quickly gain confidence to independently use the program. This provides a solid foundation on which to build, preparing readers to become power users who can take advantage of everything the program has to offer. - Includes the latest information on ANSYS Mechanical APDL for Finite Element Analysis - Aims to prepare readers to create industry standard models with ANSYS in five days or less - Provides self-study exercises that gradually build in complexity, helping the reader transition from novice to mastery of ANSYS - References the ANSYS documentation throughout, focusing on developing overall competence with the software before tackling any specific application - Prepares the reader to work with commands, input files and other advanced techniques
Finite Element Analysis of Composite Materials
Title | Finite Element Analysis of Composite Materials PDF eBook |
Author | Ever J. Barbero |
Publisher | CRC Press |
Pages | 352 |
Release | 2007-08-03 |
Genre | Technology & Engineering |
ISBN | 1420054341 |
Designing structures using composite materials poses unique challenges due especially to the need for concurrent design of both material and structure. Students are faced with two options: textbooks that teach the theory of advanced mechanics of composites, but lack computational examples of advanced analysis; and books on finite element analysis that may or may not demonstrate very limited applications to composites. But now there is third option that makes the other two obsolete: Ever J. Barbero's Finite Element Analysis of Composite Materials. By layering detailed theoretical and conceptual discussions with fully developed examples, this text supplies the missing link between theory and implementation. In-depth discussions cover all of the major aspects of advanced analysis, including three-dimensional effects, viscoelasticity, edge effects, elastic instability, damage, and delamination. More than 50 complete examples using mainly ANSYSTM, but also including some use of MATLAB®, demonstrate how to use the concepts to formulate and execute finite element analyses and how to interpret the results in engineering terms. Additionally, the source code for each example is available for download online. Cementing applied computational and analytical experience to a firm foundation of basic concepts and theory, Finite Element Analysis of Composite Materials offers a modern, practical, and versatile classroom tool for today's engineering classroom.
The Finite Element Method and Applications in Engineering Using ANSYS®
Title | The Finite Element Method and Applications in Engineering Using ANSYS® PDF eBook |
Author | Erdogan Madenci |
Publisher | Springer |
Pages | 664 |
Release | 2015-02-10 |
Genre | Technology & Engineering |
ISBN | 1489975500 |
This textbook offers theoretical and practical knowledge of the finite element method. The book equips readers with the skills required to analyze engineering problems using ANSYS®, a commercially available FEA program. Revised and updated, this new edition presents the most current ANSYS® commands and ANSYS® screen shots, as well as modeling steps for each example problem. This self-contained, introductory text minimizes the need for additional reference material by covering both the fundamental topics in finite element methods and advanced topics concerning modeling and analysis. It focuses on the use of ANSYS® through both the Graphics User Interface (GUI) and the ANSYS® Parametric Design Language (APDL). Extensive examples from a range of engineering disciplines are presented in a straightforward, step-by-step fashion. Key topics include: • An introduction to FEM • Fundamentals and analysis capabilities of ANSYS® • Fundamentals of discretization and approximation functions • Modeling techniques and mesh generation in ANSYS® • Weighted residuals and minimum potential energy • Development of macro files • Linear structural analysis • Heat transfer and moisture diffusion • Nonlinear structural problems • Advanced subjects such as submodeling, substructuring, interaction with external files, and modification of ANSYS®-GUI Electronic supplementary material for using ANSYS® can be found at http://link.springer.com/book/10.1007/978-1-4899-7550-8. This convenient online feature, which includes color figures, screen shots and input files for sample problems, allows for regeneration on the reader’s own computer. Students, researchers, and practitioners alike will find this an essential guide to predicting and simulating the physical behavior of complex engineering systems."
Introduction to Composite Materials Design, Second Edition
Title | Introduction to Composite Materials Design, Second Edition PDF eBook |
Author | Ever J. Barbero |
Publisher | CRC Press |
Pages | 564 |
Release | 2010-07-07 |
Genre | Technology & Engineering |
ISBN | 1420079158 |
Presenting a wealth of completely revised examples and new information, Introduction to Composite Materials Design, Second Edition greatly improves on the bestselling first edition. It incorporates state-of-the-art advances in knowledge and design methods that have taken place over the last 10 years, yet maintains the distinguishing features and vital content of the original. New material in this second edition: Introduces new background topics, including design for reliability and fracture mechanics Revises and updates information on polymer matrices, modern fibers (e.g., carbon nanotubes, Basalt, Vectran) and fiber forms such as textiles/fabrics Includes new information on Vacuum Assisted Resin Transfer Molding (VARTM) Incorporates major advances in prediction of unidirectional-lamina properties Reworks sections on material failure, including the most advanced prediction and design methodologies, such as in situ strength and Mohr-Coulomb criterion, etc. Covers all aspects of preliminary design, relegating finite element analysis to a separate textbook Discusses methodology used to perform damage mechanics analysis of laminated composites accounting for the main damage modes: longitudinal tension, longitudinal compression, transverse tension, in-plane shear, and transverse compression Presents in-depth analysis of composites reinforced with plain, twill, and satin weaves, as well as with random fiber reinforcements Expands the analysis of thin walled beams with newly developed examples and MATLAB® code Addresses external strengthening of reinforced-concrete beams, columns, and structural members subjected to both axial and bending loads The author distributes 78 fully developed examples throughout the book to illustrate the application of presented analysis techniques and design methodology, making this textbook ideally suited for self-study. Requiring no more than senior undergraduate-level understanding of math and mechanics, it remains an invaluable tool for students in the engineering disciplines, as well as for self-studying, practicing engineers.
Finite Element Modelling of Composite Materials and Structures
Title | Finite Element Modelling of Composite Materials and Structures PDF eBook |
Author | F L Matthews |
Publisher | Elsevier |
Pages | 225 |
Release | 2000-10-27 |
Genre | Technology & Engineering |
ISBN | 1855738929 |
Finite element modelling of composite materials and structures provides an introduction to a technique which is increasingly being used as an analytical tool for composite materials.The text is presented in four parts: - Part one sets the scene and reviews the fundamentals of composite materials together with the basic nature of FRP and its constituents. Two-dimensional stress-strain is covered, as is laminated plated theory and its limitations. - Part two reviews the basic principles of FE analysis, starting with underlying theoretical issues and going on to show how elements are derived, a model is generated and results are processed. - Part three builds on the basics of FE analysis and considers the particular issues that arise in applying finite elements to composites, especially to the layered nature of the material. - Part four deals with the application of FE to FRP composites, presenting analytical models alongside FE representations. Specific issues addressed include interlaminar stresses, fracture delamination, joints and fatigue.This book is invaluable for students of materials science and engineering, and for engineers and others wishing to expand their knowledge of structural analysis. - Covers important work on finite element analysis of composite material performance - Based on material developed for an MSc course at Imperial College, London, UK - Covers particular problems such as holes, free edges with FE results compared with experimental data and classical analysis