Final Technical Report "Multiscale Simulation Algorithms for Biochemical Systems."

Final Technical Report
Title Final Technical Report "Multiscale Simulation Algorithms for Biochemical Systems." PDF eBook
Author
Publisher
Pages
Release 2012
Genre
ISBN

Download Final Technical Report "Multiscale Simulation Algorithms for Biochemical Systems." Book in PDF, Epub and Kindle

Biochemical systems are inherently multiscale and stochastic. In microscopic systems formed by living cells, the small numbers of reactant molecules can result in dynamical behavior that is discrete and stochastic rather than continuous and deterministic. An analysis tool that respects these dynamical characteristics is the stochastic simulation algorithm (SSA, Gillespie, 1976), a numerical simulation procedure that is essentially exact for chemical systems that are spatially homogeneous or well stirred. Despite recent improvements, as a procedure that simulates every reaction event, the SSA is necessarily inefficient for most realistic problems. There are two main reasons for this, both arising from the multiscale nature of the underlying problem: (1) stiffness, i.e. the presence of multiple timescales, the fastest of which are stable; and (2) the need to include in the simulation both species that are present in relatively small quantities and should be modeled by a discrete stochastic process, and species that are present in larger quantities and are more efficiently modeled by a deterministic differential equation (or at some scale in between). This project has focused on the development of fast and adaptive algorithms, and the fun- damental theory upon which they must be based, for the multiscale simulation of biochemical systems. Areas addressed by this project include: (1) Theoretical and practical foundations for ac- celerated discrete stochastic simulation (tau-leaping); (2) Dealing with stiffness (fast reactions) in an efficient and well-justified manner in discrete stochastic simulation; (3) Development of adaptive multiscale algorithms for spatially homogeneous discrete stochastic simulation; (4) Development of high-performance SSA algorithms.

Simulation Algorithms for Computational Systems Biology

Simulation Algorithms for Computational Systems Biology
Title Simulation Algorithms for Computational Systems Biology PDF eBook
Author Luca Marchetti
Publisher Springer
Pages 245
Release 2017-09-27
Genre Computers
ISBN 3319631136

Download Simulation Algorithms for Computational Systems Biology Book in PDF, Epub and Kindle

This book explains the state-of-the-art algorithms used to simulate biological dynamics. Each technique is theoretically introduced and applied to a set of modeling cases. Starting from basic simulation algorithms, the book also introduces more advanced techniques that support delays, diffusion in space, or that are based on hybrid simulation strategies. This is a valuable self-contained resource for graduate students and practitioners in computer science, biology and bioinformatics. An appendix covers the mathematical background, and the authors include further reading sections in each chapter.

Chemical Theory and Multiscale Simulation in Biomolecules

Chemical Theory and Multiscale Simulation in Biomolecules
Title Chemical Theory and Multiscale Simulation in Biomolecules PDF eBook
Author Guohui Li
Publisher Elsevier
Pages 399
Release 2024-03-28
Genre Science
ISBN 0323959180

Download Chemical Theory and Multiscale Simulation in Biomolecules Book in PDF, Epub and Kindle

Chemical Theory and Multiscale Simulation in Biomolecules: From Principles to Case Studies helps readers understand what simulation is, what information modeling of biomolecules can provide, and how to compare this information with experiments. Beginning with an introduction to computational theory for modeling, the book goes on to describe how to control the conditions of modeling systems and possible strategies for time-cost savings in computation. Part Two further outlines key methods, with step-by-step guidance supporting readers in studying and practicing simulation processes. Part Three then shows how these theories are controlled and applied in practice, through examples and case studies on varied applications. This book is a practical guide for new learners, supporting them in learning and applying molecular modeling in practice, whilst also providing more experienced readers with the knowledge needed to gain a deep understanding of the theoretical background behind key methods. Presents computational theory alongside case studies to help readers understand the use of simulation in practice Includes extensive examples of different types of simulation methods and approaches to result analysis Provides an overview of the current academic frontier and research challenges, encouraging creativity and directing attention to current problems

Computer Methods Part A

Computer Methods Part A
Title Computer Methods Part A PDF eBook
Author
Publisher Academic Press
Pages 491
Release 2009-03-10
Genre Science
ISBN 0080923291

Download Computer Methods Part A Book in PDF, Epub and Kindle

The combination of faster, more advanced computers and more quantitatively oriented biomedical researchers has recently yielded new and more precise methods for the analysis of biomedical data. These better analyses have enhanced the conclusions that can be drawn from biomedical data, and they have changed the way that experiments are designed and performed. This volume, along with previous and forthcoming 'Computer Methods' volumes for the Methods in Enzymology serial, aims to inform biomedical researchers about recent applications of modern data analysis and simulation methods as applied to biomedical research.

Federal Plan for High-end Computing

Federal Plan for High-end Computing
Title Federal Plan for High-end Computing PDF eBook
Author
Publisher
Pages 80
Release 2004
Genre Computer networks
ISBN

Download Federal Plan for High-end Computing Book in PDF, Epub and Kindle

Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology

Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology
Title Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology PDF eBook
Author David Holcman
Publisher Springer
Pages 377
Release 2017-10-04
Genre Mathematics
ISBN 3319626272

Download Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology Book in PDF, Epub and Kindle

This book focuses on the modeling and mathematical analysis of stochastic dynamical systems along with their simulations. The collected chapters will review fundamental and current topics and approaches to dynamical systems in cellular biology. This text aims to develop improved mathematical and computational methods with which to study biological processes. At the scale of a single cell, stochasticity becomes important due to low copy numbers of biological molecules, such as mRNA and proteins that take part in biochemical reactions driving cellular processes. When trying to describe such biological processes, the traditional deterministic models are often inadequate, precisely because of these low copy numbers. This book presents stochastic models, which are necessary to account for small particle numbers and extrinsic noise sources. The complexity of these models depend upon whether the biochemical reactions are diffusion-limited or reaction-limited. In the former case, one needs to adopt the framework of stochastic reaction-diffusion models, while in the latter, one can describe the processes by adopting the framework of Markov jump processes and stochastic differential equations. Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology will appeal to graduate students and researchers in the fields of applied mathematics, biophysics, and cellular biology.

Multiscale Modeling and Simulation in Science

Multiscale Modeling and Simulation in Science
Title Multiscale Modeling and Simulation in Science PDF eBook
Author Björn Engquist
Publisher Springer Science & Business Media
Pages 332
Release 2009-02-11
Genre Computers
ISBN 3540888578

Download Multiscale Modeling and Simulation in Science Book in PDF, Epub and Kindle

Most problems in science involve many scales in time and space. An example is turbulent ?ow where the important large scale quantities of lift and drag of a wing depend on the behavior of the small vortices in the boundarylayer. Another example is chemical reactions with concentrations of the species varying over seconds and hours while the time scale of the oscillations of the chemical bonds is of the order of femtoseconds. A third example from structural mechanics is the stress and strain in a solid beam which is well described by macroscopic equations but at the tip of a crack modeling details on a microscale are needed. A common dif?culty with the simulation of these problems and many others in physics, chemistry and biology is that an attempt to represent all scales will lead to an enormous computational problem with unacceptably long computation times and large memory requirements. On the other hand, if the discretization at a coarse level ignoresthe?nescale informationthenthesolutionwillnotbephysicallymeaningful. The in?uence of the ?ne scales must be incorporated into the model. This volume is the result of a Summer School on Multiscale Modeling and S- ulation in Science held at Boso ¤n, Lidingo ¤ outside Stockholm, Sweden, in June 2007. Sixty PhD students from applied mathematics, the sciences and engineering parti- pated in the summer school.