Feynman Amplitudes, Periods and Motives

Feynman Amplitudes, Periods and Motives
Title Feynman Amplitudes, Periods and Motives PDF eBook
Author Luis Álvarez-Cónsul
Publisher American Mathematical Soc.
Pages 302
Release 2015-09-24
Genre Mathematics
ISBN 1470422476

Download Feynman Amplitudes, Periods and Motives Book in PDF, Epub and Kindle

This volume contains the proceedings of the International Research Workshop on Periods and Motives--A Modern Perspective on Renormalization, held from July 2-6, 2012, at the Instituto de Ciencias Matemáticas, Madrid, Spain. Feynman amplitudes are integrals attached to Feynman diagrams by means of Feynman rules. They form a central part of perturbative quantum field theory, where they appear as coefficients of power series expansions of probability amplitudes for physical processes. The efficient computation of Feynman amplitudes is pivotal for theoretical predictions in particle physics. Periods are numbers computed as integrals of algebraic differential forms over topological cycles on algebraic varieties. The term originated from the period of a periodic elliptic function, which can be computed as an elliptic integral. Motives emerged from Grothendieck's "universal cohomology theory", where they describe an intermediate step between algebraic varieties and their linear invariants (cohomology). The theory of motives provides a conceptual framework for the study of periods. In recent work, a beautiful relation between Feynman amplitudes, motives and periods has emerged. The articles provide an exciting panoramic view on recent developments in this fascinating and fruitful interaction between pure mathematics and modern theoretical physics.

Amplitudes, Hodge Theory and Ramification

Amplitudes, Hodge Theory and Ramification
Title Amplitudes, Hodge Theory and Ramification PDF eBook
Author Clay Mathematics Institute, Summer School Staff
Publisher Clay Mathematics Institute
Pages 240
Release 2020
Genre Algebraic number theory
ISBN 9781470443290

Download Amplitudes, Hodge Theory and Ramification Book in PDF, Epub and Kindle

This is the first volume of the lectures presented at the Clay Mathematics Institute 2014 Summer School, ``Periods and Motives: Feynman amplitudes in the 21st century'', which took place at the Instituto de Ciencias Matematicas-ICMAT (Institute of Mathematical Sciences) in Madrid, Spain. It covers the presentations by S. Bloch, by M. Marcolli and by L. Kindler and K. Rulling. The main topics of these lectures are Feynman integrals and ramification theory. On the Feynman integrals side, their relation with Hodge structures and heights as well as their monodromy are explained in Bloch's lectures. Two constructions of Feynman integrals on configuration spaces are presented in Ceyhan and Marcolli's notes. On the ramification theory side an introduction to the theory of $l$-adic sheaves with emphasis on their ramification theory is given. These notes will equip the reader with the necessary background knowledge to read current literature on these subjects.

Feynman Motives

Feynman Motives
Title Feynman Motives PDF eBook
Author Matilde Marcolli
Publisher World Scientific
Pages 234
Release 2010
Genre Science
ISBN 9814304484

Download Feynman Motives Book in PDF, Epub and Kindle

This book presents recent and ongoing research work aimed at understanding the mysterious relation between the computations of Feynman integrals in perturbative quantum field theory and the theory of motives of algebraic varieties and their periods. One of the main questions in the field is understanding when the residues of Feynman integrals in perturbative quantum field theory evaluate to periods of mixed Tate motives. The question originates from the occurrence of multiple zeta values in Feynman integrals calculations observed by Broadhurst and Kreimer.Two different approaches to the subject are described. The first, a ?bottom-up? approach, constructs explicit algebraic varieties and periods from Feynman graphs and parametric Feynman integrals. This approach, which grew out of work of Bloch?Esnault?Kreimer and was more recently developed in joint work of Paolo Aluffi and the author, leads to algebro-geometric and motivic versions of the Feynman rules of quantum field theory and concentrates on explicit constructions of motives and classes in the Grothendieck ring of varieties associated to Feynman integrals. While the varieties obtained in this way can be arbitrarily complicated as motives, the part of the cohomology that is involved in the Feynman integral computation might still be of the special mixed Tate kind. A second, ?top-down? approach to the problem, developed in the work of Alain Connes and the author, consists of comparing a Tannakian category constructed out of the data of renormalization of perturbative scalar field theories, obtained in the form of a Riemann?Hilbert correspondence, with Tannakian categories of mixed Tate motives. The book draws connections between these two approaches and gives an overview of other ongoing directions of research in the field, outlining the many connections of perturbative quantum field theory and renormalization to motives, singularity theory, Hodge structures, arithmetic geometry, supermanifolds, algebraic and non-commutative geometry.The text is aimed at researchers in mathematical physics, high energy physics, number theory and algebraic geometry. Partly based on lecture notes for a graduate course given by the author at Caltech in the fall of 2008, it can also be used by graduate students interested in working in this area.

Feynman Motives

Feynman Motives
Title Feynman Motives PDF eBook
Author Matilde Marcolli
Publisher World Scientific
Pages 234
Release 2010
Genre Science
ISBN 9814271217

Download Feynman Motives Book in PDF, Epub and Kindle

This book presents recent and ongoing research work aimed at understanding the mysterious relation between the computations of Feynman integrals in perturbative quantum field theory and the theory of motives of algebraic varieties and their periods. One of the main questions in the field is understanding when the residues of Feynman integrals in perturbative quantum field theory evaluate to periods of mixed Tate motives. The question originates from the occurrence of multiple zeta values in Feynman integrals calculations observed by Broadhurst and Kreimer. Two different approaches to the subject are described. The first, a OC bottom-upOCO approach, constructs explicit algebraic varieties and periods from Feynman graphs and parametric Feynman integrals. This approach, which grew out of work of BlochOCoEsnaultOCoKreimer and was more recently developed in joint work of Paolo Aluffi and the author, leads to algebro-geometric and motivic versions of the Feynman rules of quantum field theory and concentrates on explicit constructions of motives and classes in the Grothendieck ring of varieties associated to Feynman integrals. While the varieties obtained in this way can be arbitrarily complicated as motives, the part of the cohomology that is involved in the Feynman integral computation might still be of the special mixed Tate kind. A second, OC top-downOCO approach to the problem, developed in the work of Alain Connes and the author, consists of comparing a Tannakian category constructed out of the data of renormalization of perturbative scalar field theories, obtained in the form of a RiemannOCoHilbert correspondence, with Tannakian categories of mixed Tate motives. The book draws connections between these two approaches and gives an overview of other ongoing directions of research in the field, outlining the many connections of perturbative quantum field theory and renormalization to motives, singularity theory, Hodge structures, arithmetic geometry, supermanifolds, algebraic and non-commutative geometry. The text is aimed at researchers in mathematical physics, high energy physics, number theory and algebraic geometry. Partly based on lecture notes for a graduate course given by the author at Caltech in the fall of 2008, it can also be used by graduate students interested in working in this area. Sample Chapter(s). Chapter 1: Perturbative quantum field theory and Feynman diagrams (350 KB). Contents: Perturbative Quantum Field Theory and Feynman Diagrams; Motives and Periods; Feynman Integrals and Algebraic Varieties; Feynman Integrals and GelfandOCoLeray Forms; ConnesOCoKreimer Theory in a Nutshell; The RiemannOCoHilbert Correspondence; The Geometry of DimReg; Renormalization, Singularities, and Hodge Structures; Beyond Scalar Theories. Readership: Graduate students and researchers in mathematical physics and theoretical physics.

Motives, Quantum Field Theory, and Pseudodifferential Operators

Motives, Quantum Field Theory, and Pseudodifferential Operators
Title Motives, Quantum Field Theory, and Pseudodifferential Operators PDF eBook
Author Alan L. Carey
Publisher American Mathematical Soc.
Pages 361
Release 2010
Genre Mathematics
ISBN 0821851993

Download Motives, Quantum Field Theory, and Pseudodifferential Operators Book in PDF, Epub and Kindle

This volume contains articles related to the conference ``Motives, Quantum Field Theory, and Pseudodifferntial Operators'' held at Boston University in June 2008, with partial support from the Clay Mathematics Institute, Boston University, and the National Science Foundation. There are deep but only partially understood connections between the three conference fields, so this book is intended both to explain the known connections and to offer directions for further research. In keeping with the organization of the conference, this book contains introductory lectures on each of the conference themes and research articles on current topics in these fields. The introductory lectures are suitable for graduate students and new Ph.D.'s in both mathematics and theoretical physics, as well as for senior researchers, since few mathematicians are expert in any two of the conference areas. Among the topics discussed in the introductory lectures are the appearance of multiple zeta values both as periods of motives and in Feynman integral calculations in perturbative QFT, the use of Hopf algebra techniques for renormalization in QFT, and regularized traces of pseudodifferential operators. The motivic interpretation of multiple zeta values points to a fundamental link between motives and QFT, and there are strong parallels between regularized traces and Feynman integral techniques. The research articles cover a range of topics in areas related to the conference themes, including geometric, Hopf algebraic, analytic, motivic and computational aspects of quantum field theory and mirror symmetry. There is no unifying theory of the conference areas at present, so the research articles present the current state of the art pointing towards such a unification.

Multiple Zeta Functions, Multiple Polylogarithms And Their Special Values

Multiple Zeta Functions, Multiple Polylogarithms And Their Special Values
Title Multiple Zeta Functions, Multiple Polylogarithms And Their Special Values PDF eBook
Author Jianqiang Zhao
Publisher World Scientific
Pages 618
Release 2016-03-07
Genre Mathematics
ISBN 9814689416

Download Multiple Zeta Functions, Multiple Polylogarithms And Their Special Values Book in PDF, Epub and Kindle

This is the first introductory book on multiple zeta functions and multiple polylogarithms which are the generalizations of the Riemann zeta function and the classical polylogarithms, respectively, to the multiple variable setting. It contains all the basic concepts and the important properties of these functions and their special values. This book is aimed at graduate students, mathematicians and physicists who are interested in this current active area of research.The book will provide a detailed and comprehensive introduction to these objects, their fascinating properties and interesting relations to other mathematical subjects, and various generalizations such as their q-analogs and their finite versions (by taking partial sums modulo suitable prime powers). Historical notes and exercises are provided at the end of each chapter.

String-Math 2011

String-Math 2011
Title String-Math 2011 PDF eBook
Author Jonathan Block
Publisher American Mathematical Soc.
Pages 506
Release 2012
Genre Mathematics
ISBN 0821872958

Download String-Math 2011 Book in PDF, Epub and Kindle

The nature of interactions between mathematicians and physicists has been thoroughly transformed in recent years. String theory and quantum field theory have contributed a series of profound ideas that gave rise to entirely new mathematical fields and revitalized older ones. The influence flows in both directions, with mathematical techniques and ideas contributing crucially to major advances in string theory. A large and rapidly growing number of both mathematicians and physicists are working at the string-theoretic interface between the two academic fields. The String-Math conference series aims to bring together leading mathematicians and mathematically minded physicists working in this interface. This volume contains the proceedings of the inaugural conference in this series, String-Math 2011, which was held June 6-11, 2011, at the University of Pennsylvania.