Failure Mechanisms and Models for Silicon Semiconductor Devices

Failure Mechanisms and Models for Silicon Semiconductor Devices
Title Failure Mechanisms and Models for Silicon Semiconductor Devices PDF eBook
Author Electronic Industries Association
Publisher
Pages 32
Release 1996
Genre Semiconductors
ISBN

Download Failure Mechanisms and Models for Silicon Semiconductor Devices Book in PDF, Epub and Kindle

Guidebook for Managing Silicon Chip Reliability

Guidebook for Managing Silicon Chip Reliability
Title Guidebook for Managing Silicon Chip Reliability PDF eBook
Author Michael Pecht
Publisher CRC Press
Pages 228
Release 2017-11-22
Genre Technology & Engineering
ISBN 1351443569

Download Guidebook for Managing Silicon Chip Reliability Book in PDF, Epub and Kindle

Achieving cost-effective performance over time requires an organized, disciplined, and time-phased approach to product design, development, qualification, manufacture, and in-service management. Guidebook for Managing Silicon Chip Reliability examines the principal failure mechanisms associated with modern integrated circuits and describes common practices used to resolve them. This quick reference on semiconductor reliability addresses the key question: How will the understanding of failure mechanisms affect the future? Chapters discuss: failure sites, operational loads, and failure mechanism intrinsic device sensitivities electromigration hot carrier aging time dependent dielectric breakdown mechanical stress induced migration alpha particle sensitivity electrostatic discharge (ESD) and electrical overstress latch-up qualification screening guidelines for designing reliability Guidebook for Managing Silicon Chip Reliability focuses on device failure and causes throughout - providing a thorough framework on how to model the mechanism, test for defects, and avoid and manage damage. It will serve as an exceptional resource for electrical engineers as well as mechanical engineers working in the field of electronic packaging.

Semiconductor Device Reliability

Semiconductor Device Reliability
Title Semiconductor Device Reliability PDF eBook
Author A. Christou
Publisher Springer Science & Business Media
Pages 571
Release 2012-12-06
Genre Technology & Engineering
ISBN 9400924828

Download Semiconductor Device Reliability Book in PDF, Epub and Kindle

This publication is a compilation of papers presented at the Semiconductor Device Reliabi lity Workshop sponsored by the NATO International Scientific Exchange Program. The Workshop was held in Crete, Greece from June 4 to June 9, 1989. The objective of the Workshop was to review and to further explore advances in the field of semiconductor reliability through invited paper presentations and discussions. The technical emphasis was on quality assurance and reliability of optoelectronic and high speed semiconductor devices. The primary support for the meeting was provided by the Scientific Affairs Division of NATO. We are indebted to NATO for their support and to Dr. Craig Sinclair, who admin isters this program. The chapters of this book follow the format and order of the sessions of the meeting. Thirty-six papers were presented and discussed during the five-day Workshop. In addi tion, two panel sessions were held, with audience participation, where the particularly controversial topics of bum-in and reliability modeling and prediction methods were dis cussed. A brief review of these sessions is presented in this book.

Physics-of-Failure Based Handbook of Microelectronic Systems

Physics-of-Failure Based Handbook of Microelectronic Systems
Title Physics-of-Failure Based Handbook of Microelectronic Systems PDF eBook
Author Shahrzad Salemi
Publisher RIAC
Pages 271
Release 2008
Genre Electronic apparatus and appliances
ISBN 1933904291

Download Physics-of-Failure Based Handbook of Microelectronic Systems Book in PDF, Epub and Kindle

Failure Analysis

Failure Analysis
Title Failure Analysis PDF eBook
Author Marius Bazu
Publisher John Wiley & Sons
Pages 372
Release 2011-03-08
Genre Technology & Engineering
ISBN 1119990009

Download Failure Analysis Book in PDF, Epub and Kindle

Failure analysis is the preferred method to investigate product or process reliability and to ensure optimum performance of electrical components and systems. The physics-of-failure approach is the only internationally accepted solution for continuously improving the reliability of materials, devices and processes. The models have been developed from the physical and chemical phenomena that are responsible for degradation or failure of electronic components and materials and now replace popular distribution models for failure mechanisms such as Weibull or lognormal. Reliability engineers need practical orientation around the complex procedures involved in failure analysis. This guide acts as a tool for all advanced techniques, their benefits and vital aspects of their use in a reliability programme. Using twelve complex case studies, the authors explain why failure analysis should be used with electronic components, when implementation is appropriate and methods for its successful use. Inside you will find detailed coverage on: a synergistic approach to failure modes and mechanisms, along with reliability physics and the failure analysis of materials, emphasizing the vital importance of cooperation between a product development team involved the reasons why failure analysis is an important tool for improving yield and reliability by corrective actions the design stage, highlighting the ‘concurrent engineering' approach and DfR (Design for Reliability) failure analysis during fabrication, covering reliability monitoring, process monitors and package reliability reliability resting after fabrication, including reliability assessment at this stage and corrective actions a large variety of methods, such as electrical methods, thermal methods, optical methods, electron microscopy, mechanical methods, X-Ray methods, spectroscopic, acoustical, and laser methods new challenges in reliability testing, such as its use in microsystems and nanostructures This practical yet comprehensive reference is useful for manufacturers and engineers involved in the design, fabrication and testing of electronic components, devices, ICs and electronic systems, as well as for users of components in complex systems wanting to discover the roots of the reliability flaws for their products.

ESD

ESD
Title ESD PDF eBook
Author Steven H. Voldman
Publisher John Wiley & Sons
Pages 411
Release 2009-07-01
Genre Technology & Engineering
ISBN 0470747269

Download ESD Book in PDF, Epub and Kindle

Electrostatic discharge (ESD) failure mechanisms continue to impact semiconductor components and systems as technologies scale from micro- to nano-electronics. This book studies electrical overstress, ESD, and latchup from a failure analysis and case-study approach. It provides a clear insight into the physics of failure from a generalist perspective, followed by investigation of failure mechanisms in specific technologies, circuits, and systems. The book is unique in covering both the failure mechanism and the practical solutions to fix the problem from either a technology or circuit methodology. Look inside for extensive coverage on: failure analysis tools, EOS and ESD failure sources and failure models of semiconductor technology, and how to use failure analysis to design more robust semiconductor components and systems; electro-thermal models and technologies; the state-of-the-art technologies discussed include CMOS, BiCMOS, silicon on insulator (SOI), bipolar technology, high voltage CMOS (HVCMOS), RF CMOS, smart power, gallium arsenide (GaAs), gallium nitride (GaN), magneto-resistive (MR) , giant magneto-resistors (GMR), tunneling magneto-resistor (TMR), devices; micro electro-mechanical (MEM) systems, and photo-masks and reticles; practical methods to use failure analysis for the understanding of ESD circuit operation, temperature analysis, power distribution, ground rule development, internal bus distribution, current path analysis, quality metrics, (connecting the theoretical to the practical analysis); the failure of each key element of a technology from passives, active elements to the circuit, sub-system to package, highlighted by case studies of the elements, circuits and system-on-chip (SOC) in today’s products. ESD: Failure Mechanisms and Models is a continuation of the author’s series of books on ESD protection. It is an essential reference and a useful insight into the issues that confront modern technology as we enter the Nano-electronic era.

Influence of Temperature on Microelectronics and System Reliability

Influence of Temperature on Microelectronics and System Reliability
Title Influence of Temperature on Microelectronics and System Reliability PDF eBook
Author Pradeep Lall
Publisher CRC Press
Pages 327
Release 2020-07-09
Genre Technology & Engineering
ISBN 0429611110

Download Influence of Temperature on Microelectronics and System Reliability Book in PDF, Epub and Kindle

This book raises the level of understanding of thermal design criteria. It provides the design team with sufficient knowledge to help them evaluate device architecture trade-offs and the effects of operating temperatures. The author provides readers a sound scientific basis for system operation at realistic steady state temperatures without reliability penalties. Higher temperature performance than is commonly recommended is shown to be cost effective in production for life cycle costs. The microelectronic package considered in the book is assumed to consist of a semiconductor device with first-level interconnects that may be wirebonds, flip-chip, or tape automated bonds; die attach; substrate; substrate attach; case; lid; lid seal; and lead seal. The temperature effects on electrical parameters of both bipolar and MOSFET devices are discussed, and models quantifying the temperature effects on package elements are identified. Temperature-related models have been used to derive derating criteria for determining the maximum and minimum allowable temperature stresses for a given microelectronic package architecture. The first chapter outlines problems with some of the current modeling strategies. The next two chapters present microelectronic device failure mechanisms in terms of their dependence on steady state temperature, temperature cycle, temperature gradient, and rate of change of temperature at the chip and package level. Physics-of-failure based models used to characterize these failure mechanisms are identified and the variabilities in temperature dependence of each of the failure mechanisms are characterized. Chapters 4 and 5 describe the effects of temperature on the performance characteristics of MOS and bipolar devices. Chapter 6 discusses using high-temperature stress screens, including burn-in, for high-reliability applications. The burn-in conditions used by some manufacturers are examined and a physics-of-failure approach is described. The