Experience with Quantum Annealing Computation
Title | Experience with Quantum Annealing Computation PDF eBook |
Author | Catherine McGeoch |
Publisher | Frontiers Media SA |
Pages | 149 |
Release | 2024-09-18 |
Genre | Science |
ISBN | 2832554369 |
The past decade has seen four generations of quantum annealing processors, with qubit counts increasing from 512 on the D-Wave Two (released in 2013), to over 5000 on Advantage processors available in 2023. During this time, expanding access for researchers has sparked enormous growth in publications and in the body of knowledge surrounding capabilities, applications, and best practices in use of these novel computing systems. This Research Topic will invite submissions on all aspects of empirical experience with annealing-based quantum computers. The intention is to present a broad survey of the current state of knowledge about quantum annealing hardware, performance, software infrastructures, and applications.
Adiabatic Quantum Computation and Quantum Annealing
Title | Adiabatic Quantum Computation and Quantum Annealing PDF eBook |
Author | Catherine C. McGeoch |
Publisher | Morgan & Claypool Publishers |
Pages | 95 |
Release | 2014-07-01 |
Genre | Science |
ISBN | 1627053360 |
Adiabatic quantum computation (AQC) is an alternative to the better-known gate model of quantum computation. The two models are polynomially equivalent, but otherwise quite dissimilar: one property that distinguishes AQC from the gate model is its analog nature. Quantum annealing (QA) describes a type of heuristic search algorithm that can be implemented to run in the ``native instruction set'' of an AQC platform. D-Wave Systems Inc. manufactures {quantum annealing processor chips} that exploit quantum properties to realize QA computations in hardware. The chips form the centerpiece of a novel computing platform designed to solve NP-hard optimization problems. Starting with a 16-qubit prototype announced in 2007, the company has launched and sold increasingly larger models: the 128-qubit D-Wave One system was announced in 2010 and the 512-qubit D-Wave Two system arrived on the scene in 2013. A 1,000-qubit model is expected to be available in 2014. This monograph presents an introductory overview of this unusual and rapidly developing approach to computation. We start with a survey of basic principles of quantum computation and what is known about the AQC model and the QA algorithm paradigm. Next we review the D-Wave technology stack and discuss some challenges to building and using quantum computing systems at a commercial scale. The last chapter reviews some experimental efforts to understand the properties and capabilities of these unusual platforms. The discussion throughout is aimed at an audience of computer scientists with little background in quantum computation or in physics.
Dancing with Qubits
Title | Dancing with Qubits PDF eBook |
Author | Robert S. Sutor |
Publisher | Packt Publishing Ltd |
Pages | 515 |
Release | 2019-11-28 |
Genre | Computers |
ISBN | 1838825258 |
Explore the principles and practicalities of quantum computing Key Features Discover how quantum computing works and delve into the math behind it with this quantum computing textbook Learn how it may become the most important new computer technology of the century Explore the inner workings of quantum computing technology to quickly process complex cloud data and solve problems Book DescriptionQuantum computing is making us change the way we think about computers. Quantum bits, a.k.a. qubits, can make it possible to solve problems that would otherwise be intractable with current computing technology. Dancing with Qubits is a quantum computing textbook that starts with an overview of why quantum computing is so different from classical computing and describes several industry use cases where it can have a major impact. From there it moves on to a fuller description of classical computing and the mathematical underpinnings necessary to understand such concepts as superposition, entanglement, and interference. Next up is circuits and algorithms, both basic and more sophisticated. It then nicely moves on to provide a survey of the physics and engineering ideas behind how quantum computing hardware is built. Finally, the book looks to the future and gives you guidance on understanding how further developments will affect you. Really understanding quantum computing requires a lot of math, and this book doesn't shy away from the necessary math concepts you'll need. Each topic is introduced and explained thoroughly, in clear English with helpful examples.What you will learn See how quantum computing works, delve into the math behind it, what makes it different, and why it is so powerful with this quantum computing textbook Discover the complex, mind-bending mechanics that underpin quantum systems Understand the necessary concepts behind classical and quantum computing Refresh and extend your grasp of essential mathematics, computing, and quantum theory Explore the main applications of quantum computing to the fields of scientific computing, AI, and elsewhere Examine a detailed overview of qubits, quantum circuits, and quantum algorithm Who this book is for Dancing with Qubits is a quantum computing textbook for those who want to deeply explore the inner workings of quantum computing. This entails some sophisticated mathematical exposition and is therefore best suited for those with a healthy interest in mathematics, physics, engineering, and computer science.
Explorations in Quantum Computing
Title | Explorations in Quantum Computing PDF eBook |
Author | Colin P. Williams |
Publisher | Springer Science & Business Media |
Pages | 724 |
Release | 2010-12-07 |
Genre | Computers |
ISBN | 1846288878 |
By the year 2020, the basic memory components of a computer will be the size of individual atoms. At such scales, the current theory of computation will become invalid. "Quantum computing" is reinventing the foundations of computer science and information theory in a way that is consistent with quantum physics - the most accurate model of reality currently known. Remarkably, this theory predicts that quantum computers can perform certain tasks breathtakingly faster than classical computers – and, better yet, can accomplish mind-boggling feats such as teleporting information, breaking supposedly "unbreakable" codes, generating true random numbers, and communicating with messages that betray the presence of eavesdropping. This widely anticipated second edition of Explorations in Quantum Computing explains these burgeoning developments in simple terms, and describes the key technological hurdles that must be overcome to make quantum computers a reality. This easy-to-read, time-tested, and comprehensive textbook provides a fresh perspective on the capabilities of quantum computers, and supplies readers with the tools necessary to make their own foray into this exciting field. Topics and features: concludes each chapter with exercises and a summary of the material covered; provides an introduction to the basic mathematical formalism of quantum computing, and the quantum effects that can be harnessed for non-classical computation; discusses the concepts of quantum gates, entangling power, quantum circuits, quantum Fourier, wavelet, and cosine transforms, and quantum universality, computability, and complexity; examines the potential applications of quantum computers in areas such as search, code-breaking, solving NP-Complete problems, quantum simulation, quantum chemistry, and mathematics; investigates the uses of quantum information, including quantum teleportation, superdense coding, quantum data compression, quantum cloning, quantum negation, and quantum cryptography; reviews the advancements made towards practical quantum computers, covering developments in quantum error correction and avoidance, and alternative models of quantum computation. This text/reference is ideal for anyone wishing to learn more about this incredible, perhaps "ultimate," computer revolution. Dr. Colin P. Williams is Program Manager for Advanced Computing Paradigms at the NASA Jet Propulsion Laboratory, California Institute of Technology, and CEO of Xtreme Energetics, Inc. an advanced solar energy company. Dr. Williams has taught quantum computing and quantum information theory as an acting Associate Professor of Computer Science at Stanford University. He has spent over a decade inspiring and leading high technology teams and building business relationships with and Silicon Valley companies. Today his interests include terrestrial and Space-based power generation, quantum computing, cognitive computing, computational material design, visualization, artificial intelligence, evolutionary computing, and remote olfaction. He was formerly a Research Scientist at Xerox PARC and a Research Assistant to Prof. Stephen W. Hawking, Cambridge University.
Quantum Computing Since Democritus
Title | Quantum Computing Since Democritus PDF eBook |
Author | Scott Aaronson |
Publisher | Cambridge University Press |
Pages | 403 |
Release | 2013-03-14 |
Genre | Computers |
ISBN | 0521199565 |
Takes students and researchers on a tour through some of the deepest ideas of maths, computer science and physics.
Quantum Computing for the Quantum Curious
Title | Quantum Computing for the Quantum Curious PDF eBook |
Author | Ciaran Hughes |
Publisher | Springer Nature |
Pages | 159 |
Release | 2021-03-22 |
Genre | Science |
ISBN | 3030616010 |
This open access book makes quantum computing more accessible than ever before. A fast-growing field at the intersection of physics and computer science, quantum computing promises to have revolutionary capabilities far surpassing “classical” computation. Getting a grip on the science behind the hype can be tough: at its heart lies quantum mechanics, whose enigmatic concepts can be imposing for the novice. This classroom-tested textbook uses simple language, minimal math, and plenty of examples to explain the three key principles behind quantum computers: superposition, quantum measurement, and entanglement. It then goes on to explain how this quantum world opens up a whole new paradigm of computing. The book bridges the gap between popular science articles and advanced textbooks by making key ideas accessible with just high school physics as a prerequisite. Each unit is broken down into sections labelled by difficulty level, allowing the course to be tailored to the student’s experience of math and abstract reasoning. Problem sets and simulation-based labs of various levels reinforce the concepts described in the text and give the reader hands-on experience running quantum programs. This book can thus be used at the high school level after the AP or IB exams, in an extracurricular club, or as an independent project resource to give students a taste of what quantum computing is really about. At the college level, it can be used as a supplementary text to enhance a variety of courses in science and computing, or as a self-study guide for students who want to get ahead. Additionally, readers in business, finance, or industry will find it a quick and useful primer on the science behind computing’s future.
Quantum Computing
Title | Quantum Computing PDF eBook |
Author | National Academies of Sciences, Engineering, and Medicine |
Publisher | National Academies Press |
Pages | 273 |
Release | 2019-04-27 |
Genre | Computers |
ISBN | 030947969X |
Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.