Expander Families and Cayley Graphs

Expander Families and Cayley Graphs
Title Expander Families and Cayley Graphs PDF eBook
Author Mike Krebs
Publisher OUP USA
Pages 283
Release 2011-10-21
Genre Mathematics
ISBN 0199767114

Download Expander Families and Cayley Graphs Book in PDF, Epub and Kindle

Expander families enjoy a wide range of applications in mathematics and computer science, and their study is a fascinating one in its own right. Expander Families and Cayley Graphs: A Beginner's Guide provides an introduction to the mathematical theory underlying these objects. The central notion in the book is that of expansion, which roughly means the quality of a graph as a communications network. Cayley graphs are certain graphs constructed from groups; they play a prominent role in the study of expander families. The isoperimetric constant, the second largest eigenvalue, the diameter, and the Kazhdan constant are four measures of the expansion quality of a Cayley graph. The book carefully develops these concepts, discussing their relationships to one another and to subgroups and quotients as well as their best-case growth rates. Topics include graph spectra (i.e., eigenvalues); a Cheeger-Buser-type inequality for regular graphs; group quotients and graph coverings; subgroups and Schreier generators; the Alon-Boppana theorem on the second largest eigenvalue of a regular graph; Ramanujan graphs; diameter estimates for Cayley graphs; the zig-zag product and its relation to semidirect products of groups; eigenvalues of Cayley graphs; Paley graphs; and Kazhdan constants. The book was written with undergraduate math majors in mind; indeed, several dozen of them field-tested it. The prerequisites are minimal: one course in linear algebra, and one course in group theory. No background in graph theory or representation theory is assumed; the book develops from scatch the required facts from these fields. The authors include not only overviews and quick capsule summaries of key concepts, but also details of potentially confusing lines of reasoning. The book contains ideas for student research projects (for capstone projects, REUs, etc.), exercises (both easy and hard), and extensive notes with references to the literature.

Expansion in Finite Simple Groups of Lie Type

Expansion in Finite Simple Groups of Lie Type
Title Expansion in Finite Simple Groups of Lie Type PDF eBook
Author Terence Tao
Publisher American Mathematical Soc.
Pages 319
Release 2015-04-16
Genre Mathematics
ISBN 1470421968

Download Expansion in Finite Simple Groups of Lie Type Book in PDF, Epub and Kindle

Expander graphs are an important tool in theoretical computer science, geometric group theory, probability, and number theory. Furthermore, the techniques used to rigorously establish the expansion property of a graph draw from such diverse areas of mathematics as representation theory, algebraic geometry, and arithmetic combinatorics. This text focuses on the latter topic in the important case of Cayley graphs on finite groups of Lie type, developing tools such as Kazhdan's property (T), quasirandomness, product estimates, escape from subvarieties, and the Balog-Szemerédi-Gowers lemma. Applications to the affine sieve of Bourgain, Gamburd, and Sarnak are also given. The material is largely self-contained, with additional sections on the general theory of expanders, spectral theory, Lie theory, and the Lang-Weil bound, as well as numerous exercises and other optional material.

An Introduction to Expander Graphs

An Introduction to Expander Graphs
Title An Introduction to Expander Graphs PDF eBook
Author
Publisher
Pages
Release
Genre
ISBN 9782856298985

Download An Introduction to Expander Graphs Book in PDF, Epub and Kindle

Discrete Groups, Expanding Graphs and Invariant Measures

Discrete Groups, Expanding Graphs and Invariant Measures
Title Discrete Groups, Expanding Graphs and Invariant Measures PDF eBook
Author Alex Lubotzky
Publisher Springer Science & Business Media
Pages 201
Release 2010-02-17
Genre Mathematics
ISBN 3034603320

Download Discrete Groups, Expanding Graphs and Invariant Measures Book in PDF, Epub and Kindle

In the last ?fteen years two seemingly unrelated problems, one in computer science and the other in measure theory, were solved by amazingly similar techniques from representation theory and from analytic number theory. One problem is the - plicit construction of expanding graphs («expanders»). These are highly connected sparse graphs whose existence can be easily demonstrated but whose explicit c- struction turns out to be a dif?cult task. Since expanders serve as basic building blocks for various distributed networks, an explicit construction is highly des- able. The other problem is one posed by Ruziewicz about seventy years ago and studied by Banach [Ba]. It asks whether the Lebesgue measure is the only ?nitely additive measure of total measure one, de?ned on the Lebesgue subsets of the n-dimensional sphere and invariant under all rotations. The two problems seem, at ?rst glance, totally unrelated. It is therefore so- what surprising that both problems were solved using similar methods: initially, Kazhdan’s property (T) from representation theory of semi-simple Lie groups was applied in both cases to achieve partial results, and later on, both problems were solved using the (proved) Ramanujan conjecture from the theory of automorphic forms. The fact that representation theory and automorphic forms have anything to do with these problems is a surprise and a hint as well that the two questions are strongly related.

Graphs and Matrices

Graphs and Matrices
Title Graphs and Matrices PDF eBook
Author Ravindra B. Bapat
Publisher Springer
Pages 197
Release 2014-09-19
Genre Mathematics
ISBN 1447165691

Download Graphs and Matrices Book in PDF, Epub and Kindle

This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reorganized. Whilst this book will be invaluable to students and researchers in graph theory and combinatorial matrix theory, it will also benefit readers in the sciences and engineering.

Random Walks and Geometry

Random Walks and Geometry
Title Random Walks and Geometry PDF eBook
Author Vadim Kaimanovich
Publisher Walter de Gruyter
Pages 545
Release 2008-08-22
Genre Mathematics
ISBN 3110198088

Download Random Walks and Geometry Book in PDF, Epub and Kindle

Die jüngsten Entwicklungen zeigen, dass sich Wahrscheinlichkeitsverfahren zu einem sehr wirkungsvollen Werkzeug entwickelt haben, und das auf so unterschiedlichen Gebieten wie statistische Physik, dynamische Systeme, Riemann'sche Geometrie, Gruppentheorie, harmonische Analyse, Graphentheorie und Informatik.

Elementary Number Theory, Group Theory and Ramanujan Graphs

Elementary Number Theory, Group Theory and Ramanujan Graphs
Title Elementary Number Theory, Group Theory and Ramanujan Graphs PDF eBook
Author Giuliana Davidoff
Publisher Cambridge University Press
Pages 156
Release 2003-01-27
Genre Mathematics
ISBN 9780521824262

Download Elementary Number Theory, Group Theory and Ramanujan Graphs Book in PDF, Epub and Kindle

This text is a self-contained study of expander graphs, specifically, their explicit construction. Expander graphs are highly connected but sparse, and while being of interest within combinatorics and graph theory, they can also be applied to computer science and engineering. Only a knowledge of elementary algebra, analysis and combinatorics is required because the authors provide the necessary background from graph theory, number theory, group theory and representation theory. Thus the text can be used as a brief introduction to these subjects and their synthesis in modern mathematics.