Existence and Regularity of Minimal Surfaces on Riemannian Manifolds. (MN-27)
Title | Existence and Regularity of Minimal Surfaces on Riemannian Manifolds. (MN-27) PDF eBook |
Author | Jon T. Pitts |
Publisher | Princeton University Press |
Pages | 337 |
Release | 2014-07-14 |
Genre | Mathematics |
ISBN | 1400856450 |
Mathematical No/ex, 27 Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Existence and Regularity of Minimal Surfaces on Riemannian Manifolds
Title | Existence and Regularity of Minimal Surfaces on Riemannian Manifolds PDF eBook |
Author | Jon T. Pitts |
Publisher | |
Pages | |
Release | 2014 |
Genre | |
ISBN |
Regularity of Minimal Surfaces
Title | Regularity of Minimal Surfaces PDF eBook |
Author | Ulrich Dierkes |
Publisher | Springer Science & Business Media |
Pages | 634 |
Release | 2010-08-16 |
Genre | Mathematics |
ISBN | 3642117007 |
Regularity of Minimal Surfaces begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is that, for principal reasons, it is impossible to derive a priori estimates. Therefore regularity proofs for non-minimizers have to be based on indirect reasoning using monotonicity formulas. This is followed by a long chapter discussing geometric properties of minimal and H-surfaces such as enclosure theorems and isoperimetric inequalities, leading to the discussion of obstacle problems and of Plateau ́s problem for H-surfaces in a Riemannian manifold. A natural generalization of the isoperimetric problem is the so-called thread problem, dealing with minimal surfaces whose boundary consists of a fixed arc of given length. Existence and regularity of solutions are discussed. The final chapter on branch points presents a new approach to the theorem that area minimizing solutions of Plateau ́s problem have no interior branch points.
A Course in Minimal Surfaces
Title | A Course in Minimal Surfaces PDF eBook |
Author | Tobias Holck Colding |
Publisher | American Mathematical Society |
Pages | 330 |
Release | 2024-01-18 |
Genre | Mathematics |
ISBN | 1470476401 |
Minimal surfaces date back to Euler and Lagrange and the beginning of the calculus of variations. Many of the techniques developed have played key roles in geometry and partial differential equations. Examples include monotonicity and tangent cone analysis originating in the regularity theory for minimal surfaces, estimates for nonlinear equations based on the maximum principle arising in Bernstein's classical work, and even Lebesgue's definition of the integral that he developed in his thesis on the Plateau problem for minimal surfaces. This book starts with the classical theory of minimal surfaces and ends up with current research topics. Of the various ways of approaching minimal surfaces (from complex analysis, PDE, or geometric measure theory), the authors have chosen to focus on the PDE aspects of the theory. The book also contains some of the applications of minimal surfaces to other fields including low dimensional topology, general relativity, and materials science. The only prerequisites needed for this book are a basic knowledge of Riemannian geometry and some familiarity with the maximum principle.
Manfredo P. do Carmo – Selected Papers
Title | Manfredo P. do Carmo – Selected Papers PDF eBook |
Author | Manfredo P. do Carmo |
Publisher | Springer Science & Business Media |
Pages | 492 |
Release | 2012-04-02 |
Genre | Mathematics |
ISBN | 3642255884 |
This volume of selected academic papers demonstrates the significance of the contribution to mathematics made by Manfredo P. do Carmo. Twice a Guggenheim Fellow and the winner of many prestigious national and international awards, the professor at the institute of Pure and Applied Mathematics in Rio de Janeiro is well known as the author of influential textbooks such as Differential Geometry of Curves and Surfaces. The area of differential geometry is the main focus of this selection, though it also contains do Carmo's own commentaries on his life as a scientist as well as assessment of the impact of his researches and a complete list of his publications. Aspects covered in the featured papers include relations between curvature and topology, convexity and rigidity, minimal surfaces, and conformal immersions, among others. Offering more than just a retrospective focus, the volume deals with subjects of current interest to researchers, including a paper co-authored with Frank Warner on the convexity of hypersurfaces in space forms. It also presents the basic stability results for minimal surfaces in the Euclidean space obtained by the author and his collaborators. Edited by do Carmo's first student, now a celebrated academic in her own right, this collection pays tribute to one of the most distinguished mathematicians.
Seminar On Minimal Submanifolds. (AM-103), Volume 103
Title | Seminar On Minimal Submanifolds. (AM-103), Volume 103 PDF eBook |
Author | Enrico Bombieri |
Publisher | Princeton University Press |
Pages | 368 |
Release | 2016-03-02 |
Genre | Mathematics |
ISBN | 1400881439 |
The description for this book, Seminar On Minimal Submanifolds. (AM-103), Volume 103, will be forthcoming.
Minimal Surfaces
Title | Minimal Surfaces PDF eBook |
Author | Ulrich Dierkes |
Publisher | Springer Science & Business Media |
Pages | 699 |
Release | 2010-08-16 |
Genre | Mathematics |
ISBN | 3642116981 |
Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently, as surfaces of zero mean curvature. The final definition of a minimal surface is that of a nonconstant harmonic mapping X: \Omega\to\R^3 which is conformally parametrized on \Omega\subset\R^2 and may have branch points. Thereafter the classical theory of minimal surfaces is surveyed, comprising many examples, a treatment of Björling ́s initial value problem, reflection principles, a formula of the second variation of area, the theorems of Bernstein, Heinz, Osserman, and Fujimoto. The second part of this volume begins with a survey of Plateau ́s problem and of some of its modifications. One of the main features is a new, completely elementary proof of the fact that area A and Dirichlet integral D have the same infimum in the class C(G) of admissible surfaces spanning a prescribed contour G. This leads to a new, simplified solution of the simultaneous problem of minimizing A and D in C(G), as well as to new proofs of the mapping theorems of Riemann and Korn-Lichtenstein, and to a new solution of the simultaneous Douglas problem for A and D where G consists of several closed components. Then basic facts of stable minimal surfaces are derived; this is done in the context of stable H-surfaces (i.e. of stable surfaces of prescribed mean curvature H), especially of cmc-surfaces (H = const), and leads to curvature estimates for stable, immersed cmc-surfaces and to Nitsche ́s uniqueness theorem and Tomi ́s finiteness result. In addition, a theory of unstable solutions of Plateau ́s problems is developed which is based on Courant ́s mountain pass lemma. Furthermore, Dirichlet ́s problem for nonparametric H-surfaces is solved, using the solution of Plateau ́s problem for H-surfaces and the pertinent estimates.