Executing Data Quality Projects
Title | Executing Data Quality Projects PDF eBook |
Author | Danette McGilvray |
Publisher | Academic Press |
Pages | 378 |
Release | 2021-05-27 |
Genre | Computers |
ISBN | 0128180161 |
Executing Data Quality Projects, Second Edition presents a structured yet flexible approach for creating, improving, sustaining and managing the quality of data and information within any organization. Studies show that data quality problems are costing businesses billions of dollars each year, with poor data linked to waste and inefficiency, damaged credibility among customers and suppliers, and an organizational inability to make sound decisions. Help is here! This book describes a proven Ten Step approach that combines a conceptual framework for understanding information quality with techniques, tools, and instructions for practically putting the approach to work – with the end result of high-quality trusted data and information, so critical to today's data-dependent organizations. The Ten Steps approach applies to all types of data and all types of organizations – for-profit in any industry, non-profit, government, education, healthcare, science, research, and medicine. This book includes numerous templates, detailed examples, and practical advice for executing every step. At the same time, readers are advised on how to select relevant steps and apply them in different ways to best address the many situations they will face. The layout allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, best practices, and warnings. The experience of actual clients and users of the Ten Steps provide real examples of outputs for the steps plus highlighted, sidebar case studies called Ten Steps in Action. This book uses projects as the vehicle for data quality work and the word broadly to include: 1) focused data quality improvement projects, such as improving data used in supply chain management, 2) data quality activities in other projects such as building new applications and migrating data from legacy systems, integrating data because of mergers and acquisitions, or untangling data due to organizational breakups, and 3) ad hoc use of data quality steps, techniques, or activities in the course of daily work. The Ten Steps approach can also be used to enrich an organization's standard SDLC (whether sequential or Agile) and it complements general improvement methodologies such as six sigma or lean. No two data quality projects are the same but the flexible nature of the Ten Steps means the methodology can be applied to all. The new Second Edition highlights topics such as artificial intelligence and machine learning, Internet of Things, security and privacy, analytics, legal and regulatory requirements, data science, big data, data lakes, and cloud computing, among others, to show their dependence on data and information and why data quality is more relevant and critical now than ever before. - Includes concrete instructions, numerous templates, and practical advice for executing every step of The Ten Steps approach - Contains real examples from around the world, gleaned from the author's consulting practice and from those who implemented based on her training courses and the earlier edition of the book - Allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, and best practices - A companion Web site includes links to numerous data quality resources, including many of the templates featured in the text, quick summaries of key ideas from the Ten Steps methodology, and other tools and information that are available online
Executing Data Quality Projects
Title | Executing Data Quality Projects PDF eBook |
Author | Danette McGilvray |
Publisher | Elsevier |
Pages | 353 |
Release | 2008-09-01 |
Genre | Computers |
ISBN | 0080558399 |
Information is currency. Recent studies show that data quality problems are costing businesses billions of dollars each year, with poor data linked to waste and inefficiency, damaged credibility among customers and suppliers, and an organizational inability to make sound decisions. In this important and timely new book, Danette McGilvray presents her "Ten Steps approach to information quality, a proven method for both understanding and creating information quality in the enterprise. Her trademarked approach—in which she has trained Fortune 500 clients and hundreds of workshop attendees—applies to all types of data and to all types of organizations.* Includes numerous templates, detailed examples, and practical advice for executing every step of the "Ten Steps approach.* Allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, and best practices.* A companion Web site includes links to numerous data quality resources, including many of the planning and information-gathering templates featured in the text, quick summaries of key ideas from the Ten Step methodology, and other tools and information available online.
The Practitioner's Guide to Data Quality Improvement
Title | The Practitioner's Guide to Data Quality Improvement PDF eBook |
Author | David Loshin |
Publisher | Elsevier |
Pages | 423 |
Release | 2010-11-22 |
Genre | Computers |
ISBN | 0080920349 |
The Practitioner's Guide to Data Quality Improvement offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. It shares the fundamentals for understanding the impacts of poor data quality, and guides practitioners and managers alike in socializing, gaining sponsorship for, planning, and establishing a data quality program. It demonstrates how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. It includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning. This book is recommended for data management practitioners, including database analysts, information analysts, data administrators, data architects, enterprise architects, data warehouse engineers, and systems analysts, and their managers. - Offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. - Shows how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. - Includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning.
Measuring Data Quality for Ongoing Improvement
Title | Measuring Data Quality for Ongoing Improvement PDF eBook |
Author | Laura Sebastian-Coleman |
Publisher | Newnes |
Pages | 404 |
Release | 2012-12-31 |
Genre | Computers |
ISBN | 0123977541 |
The Data Quality Assessment Framework shows you how to measure and monitor data quality, ensuring quality over time. You'll start with general concepts of measurement and work your way through a detailed framework of more than three dozen measurement types related to five objective dimensions of quality: completeness, timeliness, consistency, validity, and integrity. Ongoing measurement, rather than one time activities will help your organization reach a new level of data quality. This plain-language approach to measuring data can be understood by both business and IT and provides practical guidance on how to apply the DQAF within any organization enabling you to prioritize measurements and effectively report on results. Strategies for using data measurement to govern and improve the quality of data and guidelines for applying the framework within a data asset are included. You'll come away able to prioritize which measurement types to implement, knowing where to place them in a data flow and how frequently to measure. Common conceptual models for defining and storing of data quality results for purposes of trend analysis are also included as well as generic business requirements for ongoing measuring and monitoring including calculations and comparisons that make the measurements meaningful and help understand trends and detect anomalies. - Demonstrates how to leverage a technology independent data quality measurement framework for your specific business priorities and data quality challenges - Enables discussions between business and IT with a non-technical vocabulary for data quality measurement - Describes how to measure data quality on an ongoing basis with generic measurement types that can be applied to any situation
Data Quality Assessment
Title | Data Quality Assessment PDF eBook |
Author | Arkady Maydanchik |
Publisher | |
Pages | 0 |
Release | 2007 |
Genre | Computers |
ISBN | 9780977140022 |
Imagine a group of prehistoric hunters armed with stone-tipped spears. Their primitive weapons made hunting large animals, such as mammoths, dangerous work. Over time, however, a new breed of hunters developed. They would stretch the skin of a previously killed mammoth on the wall and throw their spears, while observing which spear, thrown from which angle and distance, penetrated the skin the best. The data gathered helped them make better spears and develop better hunting strategies. Quality data is the key to any advancement, whether it is from the Stone Age to the Bronze Age. Or from the Information Age to whatever Age comes next. The success of corporations and government institutions largely depends on the efficiency with which they can collect, organise, and utilise data about products, customers, competitors, and employees. Fortunately, improving your data quality does not have to be such a mammoth task. This book is a must read for anyone who needs to understand, correct, or prevent data quality issues in their organisation. Skipping theory and focusing purely on what is practical and what works, this text contains a proven approach to identifying, warehousing, and analysing data errors. Master techniques in data profiling and gathering metadata, designing data quality rules, organising rule and error catalogues, and constructing the dimensional data quality scorecard. David Wells, Director of Education of the Data Warehousing Institute, says "This is one of those books that marks a milestone in the evolution of a discipline. Arkady's insights and techniques fuel the transition of data quality management from art to science -- from crafting to engineering. From deep experience, with thoughtful structure, and with engaging style Arkady brings the discipline of data quality to practitioners."
Execution
Title | Execution PDF eBook |
Author | Larry Bossidy |
Publisher | Crown Currency |
Pages | 290 |
Release | 2009-11-10 |
Genre | Business & Economics |
ISBN | 0307591468 |
#1 NEW YORK TIMES BESTSELLER • More than two million copies in print! The premier resource for how to deliver results in an uncertain world, whether you’re running an entire company or in your first management job. “A must-read for anyone who cares about business.”—The New York Times When Execution was first published, it changed the way we did our jobs by focusing on the critical importance of “the discipline of execution”: the ability to make the final leap to success by actually getting things done. Larry Bossidy and Ram Charan now reframe their empowering message for a world in which the old rules have been shattered, radical change is becoming routine, and the ability to execute is more important than ever. Now and for the foreseeable future: • Growth will be slower. But the company that executes well will have the confidence, speed, and resources to move fast as new opportunities emerge. • Competition will be fiercer, with companies searching for any possible advantage in every area from products and technologies to location and management. • Governments will take on new roles in their national economies, some as partners to business, others imposing constraints. Companies that execute well will be more attractive to government entities as partners and suppliers and better prepared to adapt to a new wave of regulation. • Risk management will become a top priority for every leader. Execution gives you an edge in detecting new internal and external threats and in weathering crises that can never be fully predicted. Execution shows how to link together people, strategy, and operations, the three core processes of every business. Leading these processes is the real job of running a business, not formulating a “vision” and leaving the work of carrying it out to others. Bossidy and Charan show the importance of being deeply and passionately engaged in an organization and why robust dialogues about people, strategy, and operations result in a business based on intellectual honesty and realism. With paradigmatic case histories from the real world—including examples like the diverging paths taken by Jamie Dimon at JPMorgan Chase and Charles Prince at Citigroup—Execution provides the realistic and hard-nosed approach to business success that could come only from authors as accomplished and insightful as Bossidy and Charan.
CMM in Practice
Title | CMM in Practice PDF eBook |
Author | Pankaj Jalote |
Publisher | Addison-Wesley Professional |
Pages | 408 |
Release | 2000 |
Genre | Computers |
ISBN | 9780201616262 |
Project initiation; Project planning; Project execution and termination.