Estimation Via Sparse Approximations
Title | Estimation Via Sparse Approximations PDF eBook |
Author | Alyson Kerry Fletcher |
Publisher | |
Pages | 126 |
Release | 2005 |
Genre | |
ISBN |
Handbook of Robust Low-Rank and Sparse Matrix Decomposition
Title | Handbook of Robust Low-Rank and Sparse Matrix Decomposition PDF eBook |
Author | Thierry Bouwmans |
Publisher | CRC Press |
Pages | 553 |
Release | 2016-05-27 |
Genre | Computers |
ISBN | 1498724639 |
Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing shows you how robust subspace learning and tracking by decomposition into low-rank and sparse matrices provide a suitable framework for computer vision applications. Incorporating both existing and new ideas, the book conveniently gives you one-stop access to a number of different decompositions, algorithms, implementations, and benchmarking techniques. Divided into five parts, the book begins with an overall introduction to robust principal component analysis (PCA) via decomposition into low-rank and sparse matrices. The second part addresses robust matrix factorization/completion problems while the third part focuses on robust online subspace estimation, learning, and tracking. Covering applications in image and video processing, the fourth part discusses image analysis, image denoising, motion saliency detection, video coding, key frame extraction, and hyperspectral video processing. The final part presents resources and applications in background/foreground separation for video surveillance. With contributions from leading teams around the world, this handbook provides a complete overview of the concepts, theories, algorithms, and applications related to robust low-rank and sparse matrix decompositions. It is designed for researchers, developers, and graduate students in computer vision, image and video processing, real-time architecture, machine learning, and data mining.
Cooperative and Graph Signal Processing
Title | Cooperative and Graph Signal Processing PDF eBook |
Author | Petar Djuric |
Publisher | Academic Press |
Pages | 868 |
Release | 2018-07-04 |
Genre | Computers |
ISBN | 0128136782 |
Cooperative and Graph Signal Processing: Principles and Applications presents the fundamentals of signal processing over networks and the latest advances in graph signal processing. A range of key concepts are clearly explained, including learning, adaptation, optimization, control, inference and machine learning. Building on the principles of these areas, the book then shows how they are relevant to understanding distributed communication, networking and sensing and social networks. Finally, the book shows how the principles are applied to a range of applications, such as Big data, Media and video, Smart grids, Internet of Things, Wireless health and Neuroscience. With this book readers will learn the basics of adaptation and learning in networks, the essentials of detection, estimation and filtering, Bayesian inference in networks, optimization and control, machine learning, signal processing on graphs, signal processing for distributed communication, social networks from the perspective of flow of information, and how to apply signal processing methods in distributed settings. - Presents the first book on cooperative signal processing and graph signal processing - Provides a range of applications and application areas that are thoroughly covered - Includes an editor in chief and associate editor from the IEEE Transactions on Signal Processing and Information Processing over Networks who have recruited top contributors for the book
Sparse Polynomial Approximation of High-Dimensional Functions
Title | Sparse Polynomial Approximation of High-Dimensional Functions PDF eBook |
Author | Ben Adcock |
Publisher | SIAM |
Pages | 310 |
Release | 2022-02-16 |
Genre | Mathematics |
ISBN | 161197688X |
Over seventy years ago, Richard Bellman coined the term “the curse of dimensionality” to describe phenomena and computational challenges that arise in high dimensions. These challenges, in tandem with the ubiquity of high-dimensional functions in real-world applications, have led to a lengthy, focused research effort on high-dimensional approximation—that is, the development of methods for approximating functions of many variables accurately and efficiently from data. This book provides an in-depth treatment of one of the latest installments in this long and ongoing story: sparse polynomial approximation methods. These methods have emerged as useful tools for various high-dimensional approximation tasks arising in a range of applications in computational science and engineering. It begins with a comprehensive overview of best s-term polynomial approximation theory for holomorphic, high-dimensional functions, as well as a detailed survey of applications to parametric differential equations. It then describes methods for computing sparse polynomial approximations, focusing on least squares and compressed sensing techniques. Sparse Polynomial Approximation of High-Dimensional Functions presents the first comprehensive and unified treatment of polynomial approximation techniques that can mitigate the curse of dimensionality in high-dimensional approximation, including least squares and compressed sensing. It develops main concepts in a mathematically rigorous manner, with full proofs given wherever possible, and it contains many numerical examples, each accompanied by downloadable code. The authors provide an extensive bibliography of over 350 relevant references, with an additional annotated bibliography available on the book’s companion website (www.sparse-hd-book.com). This text is aimed at graduate students, postdoctoral fellows, and researchers in mathematics, computer science, and engineering who are interested in high-dimensional polynomial approximation techniques.
Sparse Polynomial Approximation of High-Dimensional Functions
Title | Sparse Polynomial Approximation of High-Dimensional Functions PDF eBook |
Author | Ben Adcock |
Publisher | Society for Industrial and Applied Mathematics (SIAM) |
Pages | 0 |
Release | 2021 |
Genre | Approximation theory |
ISBN | 9781611976878 |
"This is a book about polynomial approximation in high dimensions"--
Academic Press Library in Signal Processing, Volume 7
Title | Academic Press Library in Signal Processing, Volume 7 PDF eBook |
Author | |
Publisher | Academic Press |
Pages | 654 |
Release | 2017-12-01 |
Genre | Technology & Engineering |
ISBN | 0128118881 |
Academic Press Library in Signal Processing, Volume 7: Array, Radar and Communications Engineering is aimed at university researchers, post graduate students and R&D engineers in the industry, providing a tutorial-based, comprehensive review of key topics and technologies of research in Array and Radar Processing, Communications Engineering and Machine Learning. Users will find the book to be an invaluable starting point to their research and initiatives. With this reference, readers will quickly grasp an unfamiliar area of research, understand the underlying principles of a topic, learn how a topic relates to other areas, and learn of research issues yet to be resolved. - Presents a quick tutorial of reviews of important and emerging topics of research - Explores core principles, technologies, algorithms and applications - Edited and contributed by international leading figures in the field - Includes comprehensive references to journal articles and other literature upon which to build further, more detailed knowledge
Sampling Theory
Title | Sampling Theory PDF eBook |
Author | Yonina C. Eldar |
Publisher | Cambridge University Press |
Pages | 837 |
Release | 2015-04-09 |
Genre | Computers |
ISBN | 1107003393 |
A comprehensive guide to sampling for engineers, covering the fundamental mathematical underpinnings together with practical engineering principles and applications.