Essential Math Skills: Over 250 Activities to Develop Deep Understanding
Title | Essential Math Skills: Over 250 Activities to Develop Deep Understanding PDF eBook |
Author | Bob Sornson |
Publisher | Shell Education |
Pages | 282 |
Release | 2017-05-15 |
Genre | Education |
ISBN | 1545701350 |
Support and assess the learning of essential skills needed for students' mathematics success! Created to support College and Career Readiness and other state standards, this resource is a great tool for educators. This must-have professional book allows teachers to systematically monitor students' progress toward proficiency in every essential skill. The 250 activities provide a rich menu of math learning experiences, which includes the use of manipulatives, activities, exploration, inquiry, and play. Digital resources are also provided and include student activity pages and teacher resources.
Essential Math Skills: Over 250 Activities to Develop Deep Learning
Title | Essential Math Skills: Over 250 Activities to Develop Deep Learning PDF eBook |
Author | Bob Sornson |
Publisher | Teacher Created Materials |
Pages | 170 |
Release | 2014-04-01 |
Genre | Education |
ISBN | 1425812112 |
The ultimate resource for establishing a solid foundation for mathematical proficiency, Essential Math Skills provides hundreds of engaging, easy-to-implement activities and practical assessment tools. This standards- and research-based resource identifies the core math skills that must be measured at each grade level in Pre-K through third grade. Teachers can easily identify the skills from earlier grades that may need reteaching as well as appropriate activities for students who are ready to tackle higher-level skills. Students build confidence as they develop deep understanding and successfully advance through the skills. The creative strategies presented for teaching each skill include the use of manipulatives, visual-motor activities, exploration, inquiry, and play. When they experience success with these fun tasks, students can't help but fall in love with math!
Mathematics for Machine Learning
Title | Mathematics for Machine Learning PDF eBook |
Author | Marc Peter Deisenroth |
Publisher | Cambridge University Press |
Pages | 392 |
Release | 2020-04-23 |
Genre | Computers |
ISBN | 1108569323 |
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
Dive Into Deep Learning
Title | Dive Into Deep Learning PDF eBook |
Author | Joanne Quinn |
Publisher | Corwin Press |
Pages | 297 |
Release | 2019-07-15 |
Genre | Education |
ISBN | 1544385404 |
The leading experts in system change and learning, with their school-based partners around the world, have created this essential companion to their runaway best-seller, Deep Learning: Engage the World Change the World. This hands-on guide provides a roadmap for building capacity in teachers, schools, districts, and systems to design deep learning, measure progress, and assess conditions needed to activate and sustain innovation. Dive Into Deep Learning: Tools for Engagement is rich with resources educators need to construct and drive meaningful deep learning experiences in order to develop the kind of mindset and know-how that is crucial to becoming a problem-solving change agent in our global society. Designed in full color, this easy-to-use guide is loaded with tools, tips, protocols, and real-world examples. It includes: • A framework for deep learning that provides a pathway to develop the six global competencies needed to flourish in a complex world — character, citizenship, collaboration, communication, creativity, and critical thinking. • Learning progressions to help educators analyze student work and measure progress. • Learning design rubrics, templates and examples for incorporating the four elements of learning design: learning partnerships, pedagogical practices, learning environments, and leveraging digital. • Conditions rubrics, teacher self-assessment tools, and planning guides to help educators build, mobilize, and sustain deep learning in schools and districts. Learn about, improve, and expand your world of learning. Put the joy back into learning for students and adults alike. Dive into deep learning to create learning experiences that give purpose, unleash student potential, and transform not only learning, but life itself.
Essential Mathematics for Games and Interactive Applications
Title | Essential Mathematics for Games and Interactive Applications PDF eBook |
Author | James M. Van Verth |
Publisher | CRC Press |
Pages | 706 |
Release | 2008-05-19 |
Genre | Art |
ISBN | 0123742978 |
Essential Mathematics for Games and Interactive Applications, 2nd edition presents the core mathematics necessary for sophisticated 3D graphics and interactive physical simulations. The book begins with linear algebra and matrix multiplication and expands on this foundation to cover such topics as color and lighting, interpolation, animation and basic game physics. Essential Mathematics focuses on the issues of 3D game development important to programmers and includes optimization guidance throughout. The new edition Windows code will now use Visual Studio.NET. There will also be DirectX support provided, along with OpenGL - due to its cross-platform nature. Programmers will find more concrete examples included in this edition, as well as additional information on tuning, optimization and robustness. The book has a companion CD-ROM with exercises and a test bank for the academic secondary market, and for main market: code examples built around a shared code base, including a math library covering all the topics presented in the book, a core vector/matrix math engine, and libraries to support basic 3D rendering and interaction.
Machine Learning For Dummies
Title | Machine Learning For Dummies PDF eBook |
Author | John Paul Mueller |
Publisher | John Wiley & Sons |
Pages | 471 |
Release | 2021-02-09 |
Genre | Computers |
ISBN | 1119724015 |
One of Mark Cuban’s top reads for better understanding A.I. (inc.com, 2021) Your comprehensive entry-level guide to machine learning While machine learning expertise doesn’t quite mean you can create your own Turing Test-proof android—as in the movie Ex Machina—it is a form of artificial intelligence and one of the most exciting technological means of identifying opportunities and solving problems fast and on a large scale. Anyone who masters the principles of machine learning is mastering a big part of our tech future and opening up incredible new directions in careers that include fraud detection, optimizing search results, serving real-time ads, credit-scoring, building accurate and sophisticated pricing models—and way, way more. Unlike most machine learning books, the fully updated 2nd Edition of Machine Learning For Dummies doesn't assume you have years of experience using programming languages such as Python (R source is also included in a downloadable form with comments and explanations), but lets you in on the ground floor, covering the entry-level materials that will get you up and running building models you need to perform practical tasks. It takes a look at the underlying—and fascinating—math principles that power machine learning but also shows that you don't need to be a math whiz to build fun new tools and apply them to your work and study. Understand the history of AI and machine learning Work with Python 3.8 and TensorFlow 2.x (and R as a download) Build and test your own models Use the latest datasets, rather than the worn out data found in other books Apply machine learning to real problems Whether you want to learn for college or to enhance your business or career performance, this friendly beginner's guide is your best introduction to machine learning, allowing you to become quickly confident using this amazing and fast-developing technology that's impacting lives for the better all over the world.
Deep Learning
Title | Deep Learning PDF eBook |
Author | Ian Goodfellow |
Publisher | MIT Press |
Pages | 801 |
Release | 2016-11-10 |
Genre | Computers |
ISBN | 0262337371 |
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.