Essays on Structural Analysis of Retail Competition Using Classical and Bayesian Estimation Techniques

Essays on Structural Analysis of Retail Competition Using Classical and Bayesian Estimation Techniques
Title Essays on Structural Analysis of Retail Competition Using Classical and Bayesian Estimation Techniques PDF eBook
Author Sriraman Venkataraman
Publisher
Pages 316
Release 2005
Genre
ISBN

Download Essays on Structural Analysis of Retail Competition Using Classical and Bayesian Estimation Techniques Book in PDF, Epub and Kindle

Bayesian Methods for Data Analysis, Third Edition

Bayesian Methods for Data Analysis, Third Edition
Title Bayesian Methods for Data Analysis, Third Edition PDF eBook
Author Bradley P. Carlin
Publisher CRC Press
Pages 552
Release 2008-06-30
Genre Mathematics
ISBN 9781584886983

Download Bayesian Methods for Data Analysis, Third Edition Book in PDF, Epub and Kindle

Broadening its scope to nonstatisticians, Bayesian Methods for Data Analysis, Third Edition provides an accessible introduction to the foundations and applications of Bayesian analysis. Along with a complete reorganization of the material, this edition concentrates more on hierarchical Bayesian modeling as implemented via Markov chain Monte Carlo (MCMC) methods and related data analytic techniques. New to the Third Edition New data examples, corresponding R and WinBUGS code, and homework problems Explicit descriptions and illustrations of hierarchical modeling—now commonplace in Bayesian data analysis A new chapter on Bayesian design that emphasizes Bayesian clinical trials A completely revised and expanded section on ranking and histogram estimation A new case study on infectious disease modeling and the 1918 flu epidemic A solutions manual for qualifying instructors that contains solutions, computer code, and associated output for every homework problem—available both electronically and in print Ideal for Anyone Performing Statistical Analyses Focusing on applications from biostatistics, epidemiology, and medicine, this text builds on the popularity of its predecessors by making it suitable for even more practitioners and students.

Maximum Likelihood Estimation and Inference

Maximum Likelihood Estimation and Inference
Title Maximum Likelihood Estimation and Inference PDF eBook
Author Russell B. Millar
Publisher John Wiley & Sons
Pages 286
Release 2011-07-26
Genre Mathematics
ISBN 1119977711

Download Maximum Likelihood Estimation and Inference Book in PDF, Epub and Kindle

This book takes a fresh look at the popular and well-established method of maximum likelihood for statistical estimation and inference. It begins with an intuitive introduction to the concepts and background of likelihood, and moves through to the latest developments in maximum likelihood methodology, including general latent variable models and new material for the practical implementation of integrated likelihood using the free ADMB software. Fundamental issues of statistical inference are also examined, with a presentation of some of the philosophical debates underlying the choice of statistical paradigm. Key features: Provides an accessible introduction to pragmatic maximum likelihood modelling. Covers more advanced topics, including general forms of latent variable models (including non-linear and non-normal mixed-effects and state-space models) and the use of maximum likelihood variants, such as estimating equations, conditional likelihood, restricted likelihood and integrated likelihood. Adopts a practical approach, with a focus on providing the relevant tools required by researchers and practitioners who collect and analyze real data. Presents numerous examples and case studies across a wide range of applications including medicine, biology and ecology. Features applications from a range of disciplines, with implementation in R, SAS and/or ADMB. Provides all program code and software extensions on a supporting website. Confines supporting theory to the final chapters to maintain a readable and pragmatic focus of the preceding chapters. This book is not just an accessible and practical text about maximum likelihood, it is a comprehensive guide to modern maximum likelihood estimation and inference. It will be of interest to readers of all levels, from novice to expert. It will be of great benefit to researchers, and to students of statistics from senior undergraduate to graduate level. For use as a course text, exercises are provided at the end of each chapter.

A First Course in Bayesian Statistical Methods

A First Course in Bayesian Statistical Methods
Title A First Course in Bayesian Statistical Methods PDF eBook
Author Peter D. Hoff
Publisher Springer Science & Business Media
Pages 270
Release 2009-06-02
Genre Mathematics
ISBN 0387924078

Download A First Course in Bayesian Statistical Methods Book in PDF, Epub and Kindle

A self-contained introduction to probability, exchangeability and Bayes’ rule provides a theoretical understanding of the applied material. Numerous examples with R-code that can be run "as-is" allow the reader to perform the data analyses themselves. The development of Monte Carlo and Markov chain Monte Carlo methods in the context of data analysis examples provides motivation for these computational methods.

Analysis of Step-Stress Models

Analysis of Step-Stress Models
Title Analysis of Step-Stress Models PDF eBook
Author Debasis Kundu
Publisher Academic Press
Pages 188
Release 2017-06-29
Genre Mathematics
ISBN 0081012403

Download Analysis of Step-Stress Models Book in PDF, Epub and Kindle

Analysis of Step-Stress Models: Existing Results and Some Recent Developments describes, in detail, the step-stress models and related topics that have received significant attention in the last few years. Although two books, Bagdonavicius and Nikulin (2001) and Nelson (1990), on general accelerated life testing models are available, no specific book is available on step-stress models. Due to the importance of this particular topic, Balakrishnan (2009) provided an excellent review for exponential step-stress models. The scope of this book is much more, providing the inferential issues for different probability models, both from the frequentist and Bayesian points-of-view. - Explains the different distributions of the Cumulative Exposure Mode - Covers many different models used for step-stress analysis - Discusses Step-stress life testing under the competing or complementary risk model

The Oxford Handbook of Economic Forecasting

The Oxford Handbook of Economic Forecasting
Title The Oxford Handbook of Economic Forecasting PDF eBook
Author Michael P. Clements
Publisher OUP USA
Pages 732
Release 2011-07-08
Genre Business & Economics
ISBN 0195398645

Download The Oxford Handbook of Economic Forecasting Book in PDF, Epub and Kindle

Greater data availability has been coupled with developments in statistical theory and economic theory to allow more elaborate and complicated models to be entertained. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models.

Data Mining and Predictive Analytics

Data Mining and Predictive Analytics
Title Data Mining and Predictive Analytics PDF eBook
Author Daniel T. Larose
Publisher John Wiley & Sons
Pages 827
Release 2015-02-19
Genre Computers
ISBN 1118868676

Download Data Mining and Predictive Analytics Book in PDF, Epub and Kindle

Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified “white box” approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review. Chapters provide readers with hands-on analysis problems, representing an opportunity for readers to apply their newly-acquired data mining expertise to solving real problems using large, real-world data sets. Data Mining and Predictive Analytics: Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant, with exclusive password-protected instructor content Data Mining and Predictive Analytics will appeal to computer science and statistic students, as well as students in MBA programs, and chief executives.