Ergodic Theory and Semisimple Groups

Ergodic Theory and Semisimple Groups
Title Ergodic Theory and Semisimple Groups PDF eBook
Author Robert J. Zimmer
Publisher
Pages 228
Release 1984
Genre Ergodic theory
ISBN

Download Ergodic Theory and Semisimple Groups Book in PDF, Epub and Kindle

Ergodic Theory and Semisimple Groups

Ergodic Theory and Semisimple Groups
Title Ergodic Theory and Semisimple Groups PDF eBook
Author R.J. Zimmer
Publisher Springer Science & Business Media
Pages 219
Release 2013-03-14
Genre Mathematics
ISBN 1468494880

Download Ergodic Theory and Semisimple Groups Book in PDF, Epub and Kindle

This book is based on a course given at the University of Chicago in 1980-81. As with the course, the main motivation of this work is to present an accessible treatment, assuming minimal background, of the profound work of G. A. Margulis concerning rigidity, arithmeticity, and structure of lattices in semi simple groups, and related work of the author on the actions of semisimple groups and their lattice subgroups. In doing so, we develop the necessary prerequisites from earlier work of Borel, Furstenberg, Kazhdan, Moore, and others. One of the difficulties involved in an exposition of this material is the continuous interplay between ideas from the theory of algebraic groups on the one hand and ergodic theory on the other. This, of course, is not so much a mathematical difficulty as a cultural one, as the number of persons comfortable in both areas has not traditionally been large. We hope this work will also serve as a contribution towards improving that situation. While there are a number of satisfactory introductory expositions of the ergodic theory of integer or real line actions, there is no such exposition of the type of ergodic theoretic results with which we shall be dealing (concerning actions of more general groups), and hence we have assumed absolutely no knowledge of ergodic theory (not even the definition of "ergodic") on the part of the reader. All results are developed in full detail.

Group Actions in Ergodic Theory, Geometry, and Topology

Group Actions in Ergodic Theory, Geometry, and Topology
Title Group Actions in Ergodic Theory, Geometry, and Topology PDF eBook
Author Robert J. Zimmer
Publisher University of Chicago Press
Pages 724
Release 2019-12-23
Genre Mathematics
ISBN 022656827X

Download Group Actions in Ergodic Theory, Geometry, and Topology Book in PDF, Epub and Kindle

Robert J. Zimmer is best known in mathematics for the highly influential conjectures and program that bear his name. Group Actions in Ergodic Theory, Geometry, and Topology: Selected Papers brings together some of the most significant writings by Zimmer, which lay out his program and contextualize his work over the course of his career. Zimmer’s body of work is remarkable in that it involves methods from a variety of mathematical disciplines, such as Lie theory, differential geometry, ergodic theory and dynamical systems, arithmetic groups, and topology, and at the same time offers a unifying perspective. After arriving at the University of Chicago in 1977, Zimmer extended his earlier research on ergodic group actions to prove his cocycle superrigidity theorem which proved to be a pivotal point in articulating and developing his program. Zimmer’s ideas opened the door to many others, and they continue to be actively employed in many domains related to group actions in ergodic theory, geometry, and topology. In addition to the selected papers themselves, this volume opens with a foreword by David Fisher, Alexander Lubotzky, and Gregory Margulis, as well as a substantial introductory essay by Zimmer recounting the course of his career in mathematics. The volume closes with an afterword by Fisher on the most recent developments around the Zimmer program.

Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces

Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces
Title Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces PDF eBook
Author M. Bachir Bekka
Publisher Cambridge University Press
Pages 214
Release 2000-05-11
Genre Mathematics
ISBN 9780521660303

Download Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces Book in PDF, Epub and Kindle

This book, first published in 2000, focuses on developments in the study of geodesic flows on homogenous spaces.

Dynamical Systems and Semisimple Groups

Dynamical Systems and Semisimple Groups
Title Dynamical Systems and Semisimple Groups PDF eBook
Author Renato Feres
Publisher Cambridge University Press
Pages 268
Release 1998-06-13
Genre Mathematics
ISBN 9780521591621

Download Dynamical Systems and Semisimple Groups Book in PDF, Epub and Kindle

The theory of dynamical systems can be described as the study of the global properties of groups of transformations. The historical roots of the subject lie in celestial and statistical mechanics, for which the group is the time parameter. The more general modern theory treats the dynamical properties of the semisimple Lie groups. Some of the most fundamental discoveries in this area are due to the work of G.A. Margulis and R. Zimmer. This book comprises a systematic, self-contained introduction to the Margulis-Zimmer theory, and provides an entry into current research. Assuming only a basic knowledge of manifolds, algebra, and measure theory, this book should appeal to anyone interested in Lie theory, differential geometry and dynamical systems.

Lectures on Ergodic Theory

Lectures on Ergodic Theory
Title Lectures on Ergodic Theory PDF eBook
Author Paul R. Halmos
Publisher Courier Dover Publications
Pages 113
Release 2017-12-13
Genre Mathematics
ISBN 0486814890

Download Lectures on Ergodic Theory Book in PDF, Epub and Kindle

This concise classic by Paul R. Halmos, a well-known master of mathematical exposition, has served as a basic introduction to aspects of ergodic theory since its first publication in 1956. "The book is written in the pleasant, relaxed, and clear style usually associated with the author," noted the Bulletin of the American Mathematical Society, adding, "The material is organized very well and painlessly presented." Suitable for advanced undergraduates and graduate students in mathematics, the treatment covers recurrence, mean and pointwise convergence, ergodic theorem, measure algebras, and automorphisms of compact groups. Additional topics include weak topology and approximation, uniform topology and approximation, invariant measures, unsolved problems, and other subjects.

Discrete Subgroups of Semisimple Lie Groups

Discrete Subgroups of Semisimple Lie Groups
Title Discrete Subgroups of Semisimple Lie Groups PDF eBook
Author Gregori A. Margulis
Publisher Springer Science & Business Media
Pages 408
Release 1991-02-15
Genre Mathematics
ISBN 9783540121794

Download Discrete Subgroups of Semisimple Lie Groups Book in PDF, Epub and Kindle

Discrete subgroups have played a central role throughout the development of numerous mathematical disciplines. Discontinuous group actions and the study of fundamental regions are of utmost importance to modern geometry. Flows and dynamical systems on homogeneous spaces have found a wide range of applications, and of course number theory without discrete groups is unthinkable. This book, written by a master of the subject, is primarily devoted to discrete subgroups of finite covolume in semi-simple Lie groups. Since the notion of "Lie group" is sufficiently general, the author not only proves results in the classical geometry setting, but also obtains theorems of an algebraic nature, e.g. classification results on abstract homomorphisms of semi-simple algebraic groups over global fields. The treatise of course contains a presentation of the author's fundamental rigidity and arithmeticity theorems. The work in this monograph requires the language and basic results from fields such as algebraic groups, ergodic theory, the theory of unitary representatons, and the theory of amenable groups. The author develops the necessary material from these subjects; so that, while the book is of obvious importance for researchers working in related areas, it is essentially self-contained and therefore is also of great interest for advanced students.