Epidemic Modelling
Title | Epidemic Modelling PDF eBook |
Author | D. J. Daley |
Publisher | Cambridge University Press |
Pages | 160 |
Release | 1999-04-13 |
Genre | Mathematics |
ISBN | 9780521640794 |
This is a general introduction to the mathematical modelling of diseases.
Epidemics
Title | Epidemics PDF eBook |
Author | Ottar N. Bjørnstad |
Publisher | Springer |
Pages | 318 |
Release | 2018-10-30 |
Genre | Medical |
ISBN | 3319974874 |
This book is designed to be a practical study in infectious disease dynamics. The book offers an easy to follow implementation and analysis of mathematical epidemiology. The book focuses on recent case studies in order to explore various conceptual, mathematical, and statistical issues. The dynamics of infectious diseases shows a wide diversity of pattern. Some have locally persistent chains-of-transmission, others persist spatially in ‘consumer-resource metapopulations’. Some infections are prevalent among the young, some among the old and some are age-invariant. Temporally, some diseases have little variation in prevalence, some have predictable seasonal shifts and others exhibit violent epidemics that may be regular or irregular in their timing. Models and ‘models-with-data’ have proved invaluable for understanding and predicting this diversity, and thence help improve intervention and control. Using mathematical models to understand infectious disease dynamics has a very rich history in epidemiology. The field has seen broad expansions of theories as well as a surge in real-life application of mathematics to dynamics and control of infectious disease. The chapters of Epidemics: Models and Data using R have been organized in a reasonably logical way: Chapters 1-10 is a mix and match of models, data and statistics pertaining to local disease dynamics; Chapters 11-13 pertains to spatial and spatiotemporal dynamics; Chapter 14 highlights similarities between the dynamics of infectious disease and parasitoid-host dynamics; Finally, Chapters 15 and 16 overview additional statistical methodology useful in studies of infectious disease dynamics. This book can be used as a guide for working with data, models and ‘models-and-data’ to understand epidemics and infectious disease dynamics in space and time.
Stochastic Epidemic Models with Inference
Title | Stochastic Epidemic Models with Inference PDF eBook |
Author | Tom Britton |
Publisher | Springer Nature |
Pages | 477 |
Release | 2019-11-30 |
Genre | Mathematics |
ISBN | 3030309002 |
Focussing on stochastic models for the spread of infectious diseases in a human population, this book is the outcome of a two-week ICPAM/CIMPA school on "Stochastic models of epidemics" which took place in Ziguinchor, Senegal, December 5–16, 2015. The text is divided into four parts, each based on one of the courses given at the school: homogeneous models (Tom Britton and Etienne Pardoux), two-level mixing models (David Sirl and Frank Ball), epidemics on graphs (Viet Chi Tran), and statistics for epidemic models (Catherine Larédo). The CIMPA school was aimed at PhD students and Post Docs in the mathematical sciences. Parts (or all) of this book can be used as the basis for traditional or individual reading courses on the topic. For this reason, examples and exercises (some with solutions) are provided throughout.
Stochastic Epidemic Models and Their Statistical Analysis
Title | Stochastic Epidemic Models and Their Statistical Analysis PDF eBook |
Author | Hakan Andersson |
Publisher | Springer Science & Business Media |
Pages | 140 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461211581 |
The present lecture notes describe stochastic epidemic models and methods for their statistical analysis. Our aim is to present ideas for such models, and methods for their analysis; along the way we make practical use of several probabilistic and statistical techniques. This will be done without focusing on any specific disease, and instead rigorously analyzing rather simple models. The reader of these lecture notes could thus have a two-fold purpose in mind: to learn about epidemic models and their statistical analysis, and/or to learn and apply techniques in probability and statistics. The lecture notes require an early graduate level knowledge of probability and They introduce several techniques which might be new to students, but our statistics. intention is to present these keeping the technical level at a minlmum. Techniques that are explained and applied in the lecture notes are, for example: coupling, diffusion approximation, random graphs, likelihood theory for counting processes, martingales, the EM-algorithm and MCMC methods. The aim is to introduce and apply these techniques, thus hopefully motivating their further theoretical treatment. A few sections, mainly in Chapter 5, assume some knowledge of weak convergence; we hope that readers not familiar with this theory can understand the these parts at a heuristic level. The text is divided into two distinct but related parts: modelling and estimation.
Age Structured Epidemic Modeling
Title | Age Structured Epidemic Modeling PDF eBook |
Author | Xue-Zhi Li |
Publisher | Springer |
Pages | 383 |
Release | 2021-05-29 |
Genre | Mathematics |
ISBN | 9783030424985 |
This book introduces advanced mathematical methods and techniques for analysis and simulation of models in mathematical epidemiology. Chronological age and class-age play an important role in the description of infectious diseases and this text provides the tools for the analysis of this type of partial differential equation models. This book presents general theoretical tools as well as large number of specific examples to guide the reader to develop their own tools that they may then apply to study structured models in mathematical epidemiology. The book will be a valuable addition to the arsenal of all researchers interested in developing theory or studying specific models with age structure.
Stochastic Population and Epidemic Models
Title | Stochastic Population and Epidemic Models PDF eBook |
Author | Linda J. S. Allen |
Publisher | Springer |
Pages | 55 |
Release | 2015-08-20 |
Genre | Mathematics |
ISBN | 331921554X |
This monograph provides a summary of the basic theory of branching processes for single-type and multi-type processes. Classic examples of population and epidemic models illustrate the probability of population or epidemic extinction obtained from the theory of branching processes. The first chapter develops the branching process theory, while in the second chapter two applications to population and epidemic processes of single-type branching process theory are explored. The last two chapters present multi-type branching process applications to epidemic models, and then continuous-time and continuous-state branching processes with applications. In addition, several MATLAB programs for simulating stochastic sample paths are provided in an Appendix. These notes originated as part of a lecture series on Stochastics in Biological Systems at the Mathematical Biosciences Institute in Ohio, USA. Professor Linda Allen is a Paul Whitfield Horn Professor of Mathematics in the Department of Mathematics and Statistics at Texas Tech University, USA.
Mathematics of Epidemics on Networks
Title | Mathematics of Epidemics on Networks PDF eBook |
Author | István Z. Kiss |
Publisher | Springer |
Pages | 423 |
Release | 2017-06-08 |
Genre | Mathematics |
ISBN | 3319508067 |
This textbook provides an exciting new addition to the area of network science featuring a stronger and more methodical link of models to their mathematical origin and explains how these relate to each other with special focus on epidemic spread on networks. The content of the book is at the interface of graph theory, stochastic processes and dynamical systems. The authors set out to make a significant contribution to closing the gap between model development and the supporting mathematics. This is done by: Summarising and presenting the state-of-the-art in modeling epidemics on networks with results and readily usable models signposted throughout the book; Presenting different mathematical approaches to formulate exact and solvable models; Identifying the concrete links between approximate models and their rigorous mathematical representation; Presenting a model hierarchy and clearly highlighting the links between model assumptions and model complexity; Providing a reference source for advanced undergraduate students, as well as doctoral students, postdoctoral researchers and academic experts who are engaged in modeling stochastic processes on networks; Providing software that can solve differential equation models or directly simulate epidemics on networks. Replete with numerous diagrams, examples, instructive exercises, and online access to simulation algorithms and readily usable code, this book will appeal to a wide spectrum of readers from different backgrounds and academic levels. Appropriate for students with or without a strong background in mathematics, this textbook can form the basis of an advanced undergraduate or graduate course in both mathematics and other departments alike.