Entropy Methods for Diffusive Partial Differential Equations
Title | Entropy Methods for Diffusive Partial Differential Equations PDF eBook |
Author | Ansgar Jüngel |
Publisher | Springer |
Pages | 146 |
Release | 2016-06-17 |
Genre | Mathematics |
ISBN | 3319342193 |
This book presents a range of entropy methods for diffusive PDEs devised by many researchers in the course of the past few decades, which allow us to understand the qualitative behavior of solutions to diffusive equations (and Markov diffusion processes). Applications include the large-time asymptotics of solutions, the derivation of convex Sobolev inequalities, the existence and uniqueness of weak solutions, and the analysis of discrete and geometric structures of the PDEs. The purpose of the book is to provide readers an introduction to selected entropy methods that can be found in the research literature. In order to highlight the core concepts, the results are not stated in the widest generality and most of the arguments are only formal (in the sense that the functional setting is not specified or sufficient regularity is supposed). The text is also suitable for advanced master and PhD students and could serve as a textbook for special courses and seminars.
Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples
Title | Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples PDF eBook |
Author | Robert Klöfkorn |
Publisher | Springer Nature |
Pages | 727 |
Release | 2020-06-09 |
Genre | Computers |
ISBN | 3030436519 |
The proceedings of the 9th conference on "Finite Volumes for Complex Applications" (Bergen, June 2020) are structured in two volumes. The first volume collects the focused invited papers, as well as the reviewed contributions from internationally leading researchers in the field of analysis of finite volume and related methods. Topics covered include convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical principles. Altogether, a rather comprehensive overview is given on the state of the art in the field. The properties of the methods considered in the conference give them distinguished advantages for a number of applications. These include fluid dynamics, magnetohydrodynamics, structural analysis, nuclear physics, semiconductor theory, carbon capture utilization and storage, geothermal energy and further topics. The second volume covers reviewed contributions reporting successful applications of finite volume and related methods in these fields. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability, making the finite volume methods compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. The book is a valuable resource for researchers, PhD and master’s level students in numerical analysis, scientific computing and related fields such as partial differential equations, as well as engineers working in numerical modeling and simulations.
PDE Dynamics
Title | PDE Dynamics PDF eBook |
Author | Christian Kuehn |
Publisher | SIAM |
Pages | 260 |
Release | 2019-04-10 |
Genre | Mathematics |
ISBN | 1611975662 |
This book provides an overview of the myriad methods for applying dynamical systems techniques to PDEs and highlights the impact of PDE methods on dynamical systems. Also included are many nonlinear evolution equations, which have been benchmark models across the sciences, and examples and techniques to strengthen preparation for research. PDE Dynamics: An Introduction is intended for senior undergraduate students, beginning graduate students, and researchers in applied mathematics, theoretical physics, and adjacent disciplines. Structured as a textbook or seminar reference, it can be used in courses titled Dynamics of PDEs, PDEs 2, Dynamical Systems 2, Evolution Equations, or Infinite-Dimensional Dynamics.
Collected Papers in Honor of Yoshihiro Shibata
Title | Collected Papers in Honor of Yoshihiro Shibata PDF eBook |
Author | Tohru Ozawa |
Publisher | Springer Nature |
Pages | 396 |
Release | 2023-01-01 |
Genre | Mathematics |
ISBN | 3031192524 |
Yoshihiro Shibata has made many significant contributions to the area of mathematical fluid mechanics over the course of his illustrious career, including landmark work on the Navier-Stokes equations. The papers collected here — on the occasion of his 70th birthday — are written by world-renowned researchers and celebrate his decades of outstanding achievements.
Parallel Solution of Partial Differential Equations
Title | Parallel Solution of Partial Differential Equations PDF eBook |
Author | Petter Bjorstad |
Publisher | Springer Science & Business Media |
Pages | 309 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 146121176X |
This IMA Volume in Mathematics and its Applications PARALLEL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS is based on the proceedings of a workshop with the same title. The work shop was an integral part of the 1996-97IMA program on "MATHEMAT ICS IN HIGH-PERFORMANCE COMPUTING." I would like to thank Petter Bj0rstad of the Institutt for Informatikk, University of Bergen and Mitchell Luskin of the School of Mathematics, University of Minnesota for their excellent work as organizers of the meeting and for editing the proceedings. I also take this opportunity to thank the National Science Founda tion (NSF), Department of Energy (DOE), and the Army Research Office (ARO), whose financial support made the workshop possible. Willard Miller, Jr., Professor and Director v PREFACE The numerical solution of partial differential equations has been of major importance to the development of many technologies and has been the target of much of the development of parallel computer hardware and software. Parallel computers offer the promise of greatly increased perfor mance and the routine calculation of previously intractable problems. The papers in this volume were presented at the IMA workshop on the Paral lel Solution of PDE held during June 9-13, 1997. The workshop brought together leading numerical analysts, computer scientists, and engineers to assess the state-of-the-art and to consider future directions.
New Trends in Analysis and Geometry
Title | New Trends in Analysis and Geometry PDF eBook |
Author | Mohamed A. Khamsi |
Publisher | Cambridge Scholars Publishing |
Pages | 401 |
Release | 2020-01-24 |
Genre | Mathematics |
ISBN | 1527546128 |
This unique mathematical volume brings together geometers, analysts, differential equations specialists and graph-theorists to provide a glimpse on recent mathematical trends whose commonalities have hitherto remained, for the most part, unnoticed. The applied mathematician will be pleasantly surprised with the interpretation of a voting system in terms of the fixed points of a mapping given in the book, as much as the classical analyst will be enthusiastic to find detailed discussions on the generalization of the notion of metric space, in which the metric takes values on an abstract monoid. Classical themes on fixed point theory are adapted to the diverse setting of graph theory, thus uncovering a set of tools whose power and versatility will be appreciated by mathematicians working on either area. The volume also includes recent results on variable exponent spaces which reveal much-needed connections with partial differential equations, while the incipient field of variational inequalities on manifolds, also explored here, will be of interest to researchers from a variety of fields.
Partial Differential Equations and Inverse Problems
Title | Partial Differential Equations and Inverse Problems PDF eBook |
Author | Carlos Conca |
Publisher | American Mathematical Soc. |
Pages | 426 |
Release | 2004 |
Genre | Mathematics |
ISBN | 0821834487 |
This proceedings volume is a collection of articles from the Pan-American Advanced Studies Institute on partial differential equations, nonlinear analysis and inverse problems held in Santiago (Chile). Interactions among partial differential equations, nonlinear analysis, and inverse problems have produced remarkable developments over the last couple of decades. This volume contains survey articles reflecting the work of leading experts who presented minicourses at the event. Contributors include J. Busca, Y. Capdeboscq, M.S. Vogelius, F. A. Grunbaum, L. F. Matusevich, M. de Hoop, and P. Kuchment. The volume is suitable for graduate students and researchers interested in partial differential equations and their applications in nonlinear analysis and inverse problems.