Materials Characterization

Materials Characterization
Title Materials Characterization PDF eBook
Author Yang Leng
Publisher John Wiley & Sons
Pages 384
Release 2009-03-04
Genre Technology & Engineering
ISBN 0470822996

Download Materials Characterization Book in PDF, Epub and Kindle

This book covers state-of-the-art techniques commonly used in modern materials characterization. Two important aspects of characterization, materials structures and chemical analysis, are included. Widely used techniques, such as metallography (light microscopy), X-ray diffraction, transmission and scanning electron microscopy, are described. In addition, the book introduces advanced techniques, including scanning probe microscopy. The second half of the book accordingly presents techniques such as X-ray energy dispersive spectroscopy (commonly equipped in the scanning electron microscope), fluorescence X-ray spectroscopy, and popular surface analysis techniques (XPS and SIMS). Finally, vibrational spectroscopy (FTIR and Raman) and thermal analysis are also covered.

Handbook of Materials Characterization

Handbook of Materials Characterization
Title Handbook of Materials Characterization PDF eBook
Author Surender Kumar Sharma
Publisher Springer
Pages 612
Release 2018-09-18
Genre Technology & Engineering
ISBN 3319929550

Download Handbook of Materials Characterization Book in PDF, Epub and Kindle

This book focuses on the widely used experimental techniques available for the structural, morphological, and spectroscopic characterization of materials. Recent developments in a wide range of experimental techniques and their application to the quantification of materials properties are an essential side of this book. Moreover, it provides concise but thorough coverage of the practical and theoretical aspects of the analytical techniques used to characterize a wide variety of functional nanomaterials. The book provides an overview of widely used characterization techniques for a broad audience: from beginners and graduate students, to advanced specialists in both academia and industry.

Engineering Materials Characterization

Engineering Materials Characterization
Title Engineering Materials Characterization PDF eBook
Author Kaushik Kumar
Publisher Walter de Gruyter GmbH & Co KG
Pages 270
Release 2023-11-20
Genre Technology & Engineering
ISBN 3110997592

Download Engineering Materials Characterization Book in PDF, Epub and Kindle

Materials Science today is the base for all technological and industrial developments. The book provides the understanding of the advanced spectroscopic and microscopic instruments used for material characterization. The main issues addressed are 1) a detailed understanding of the instrument, including working and handling, 2) sample preparation, and 3) data analysis and interpretation. The book is divided in two parts i.e., Part A discusses microscopic instruments, consisting of Optical Microscope, Scanning Electron Microscopy, Atomic Force Microscopy, Field Emission Scanning Electron Microscope and X-Ray Diffraction. Part B is on spectroscopic instruments and covers FTIR Spectrometer, Raman Spectrometer, X-ray Photoelectron Spectroscopy, Ultraviolet Photoelectron Spectroscopy, Fluorescence Spectroscopy, and Nuclear Magnetic Resonance Spectroscopy.

Materials Characterization Techniques

Materials Characterization Techniques
Title Materials Characterization Techniques PDF eBook
Author Sam Zhang
Publisher CRC Press
Pages 344
Release 2008-12-22
Genre Science
ISBN 1420042955

Download Materials Characterization Techniques Book in PDF, Epub and Kindle

Experts must be able to analyze and distinguish all materials, or combinations of materials, in use today-whether they be metals, ceramics, polymers, semiconductors, or composites. To understand a material's structure, how that structure determines its properties, and how that material will subsequently work in technological applications, researche

Advanced Techniques for Materials Characterization

Advanced Techniques for Materials Characterization
Title Advanced Techniques for Materials Characterization PDF eBook
Author A.K. Tyagi
Publisher Trans Tech Publications Ltd
Pages 528
Release 2009-01-02
Genre Technology & Engineering
ISBN 303813323X

Download Advanced Techniques for Materials Characterization Book in PDF, Epub and Kindle

Volume is indexed by Thomson Reuters BCI (WoS). Nowadays, an impressively large number of powerful characterization techniques is being used by physicists, chemists, biologists and engineers in order to solve analytical research problems; especially those related to the investigation of the properties of new materials for advanced applications. Although there are a few available books which deal with such experimental techniques, they are either too exhaustive and cover very few techniques or are too elementary to provide a solid basis for learning to use the characterization technique. Moreover, such books usually over-emphasize the textbook approach: being full of theoretical concepts and mathematical derivations, and omitting the practical instruction required in order to permit newcomers to use the techniques.

Materials Characterization Using Nondestructive Evaluation (NDE) Methods

Materials Characterization Using Nondestructive Evaluation (NDE) Methods
Title Materials Characterization Using Nondestructive Evaluation (NDE) Methods PDF eBook
Author Gerhard Huebschen
Publisher Woodhead Publishing
Pages 322
Release 2016-03-23
Genre Technology & Engineering
ISBN 008100057X

Download Materials Characterization Using Nondestructive Evaluation (NDE) Methods Book in PDF, Epub and Kindle

Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques Reviews the determination of microstructural and mechanical properties Focuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industries Serves as a highly desirable resource for both long-term monitoring and short-term assessment of materials

X-ray Characterization of Materials

X-ray Characterization of Materials
Title X-ray Characterization of Materials PDF eBook
Author Eric Lifshin
Publisher John Wiley & Sons
Pages 277
Release 2008-07-11
Genre Technology & Engineering
ISBN 3527613757

Download X-ray Characterization of Materials Book in PDF, Epub and Kindle

Linking of materials properties with microstructures is a fundamental theme in materials science, for which a detailed knowledge of the modern characterization techniques is essential. Since modern materials such as high-temperature alloys, engineering thermoplastics and multilayer semiconductor films have many elemental constituents distributed in more than one phase, characterization is essential to the systematic development of such new materials and understanding how they behave in practical applications. X-ray techniques play a major role in providing information on the elemental composition and crystal and grain structures of all types of materials. The challenge to the materials characterization expert is to understand how specific instruments and analytical techniques can provide detailed information about what makes each material unique. The challenge to the materials scientist, chemist, or engineer is to know what information is needed to fully characterize each material and how to use this information to explain its behavior, develop new and improved properties, reduce costs, or ensure compliance with regulatory requirements. This comprehensive handbook presents all the necessary background to understand the applications of X-ray analysis to materials characterization with particular attention to the modern approach to these methods.