Spike-based learning application for neuromorphic engineering
Title | Spike-based learning application for neuromorphic engineering PDF eBook |
Author | Anup Das |
Publisher | Frontiers Media SA |
Pages | 235 |
Release | 2024-08-22 |
Genre | Science |
ISBN | 2832553184 |
Spiking Neural Networks (SNN) closely imitate biological networks. Information processing occurs in both spatial and temporal manner, making SNN extremely interesting for the pertinent mimicking of the biological brain. Biological brains code and transmit the sensory information in the form of spikes that capture the spatial and temporal information of the environment with amazing precision. This information is processed in an asynchronous way by the neural layer performing recognition of complex spatio-temporal patterns with sub-milliseconds delay and at with a power budget in the order of 20W. The efficient spike coding mechanism and the asynchronous and sparse processing and communication of spikes seems to be key in the energy efficiency and high-speed computation capabilities of biological brains. SNN low-power and event-based computation make them more attractive when compared to other artificial neural networks (ANN).
Physical neuromorphic computing and its industrial applications
Title | Physical neuromorphic computing and its industrial applications PDF eBook |
Author | Toshiyuki Yamane |
Publisher | Frontiers Media SA |
Pages | 163 |
Release | 2023-08-02 |
Genre | Science |
ISBN | 2832531288 |
Neuromorphic Engineering Systems and Applications
Title | Neuromorphic Engineering Systems and Applications PDF eBook |
Author | André van Schaik |
Publisher | Frontiers Media SA |
Pages | 183 |
Release | 2015-07-05 |
Genre | Computational neuroscience |
ISBN | 288919454X |
Neuromorphic engineering has just reached its 25th year as a discipline. In the first two decades neuromorphic engineers focused on building models of sensors, such as silicon cochleas and retinas, and building blocks such as silicon neurons and synapses. These designs have honed our skills in implementing sensors and neural networks in VLSI using analog and mixed mode circuits. Over the last decade the address event representation has been used to interface devices and computers from different designers and even different groups. This facility has been essential for our ability to combine sensors, neural networks, and actuators into neuromorphic systems. More recently, several big projects have emerged to build very large scale neuromorphic systems. The Telluride Neuromorphic Engineering Workshop (since 1994) and the CapoCaccia Cognitive Neuromorphic Engineering Workshop (since 2009) have been instrumental not only in creating a strongly connected research community, but also in introducing different groups to each other’s hardware. Many neuromorphic systems are first created at one of these workshops. With this special research topic, we showcase the state-of-the-art in neuromorphic systems.
Energy Efficiency and Robustness of Advanced Machine Learning Architectures
Title | Energy Efficiency and Robustness of Advanced Machine Learning Architectures PDF eBook |
Author | Alberto Marchisio |
Publisher | CRC Press |
Pages | 361 |
Release | 2024-11-14 |
Genre | Computers |
ISBN | 1040165036 |
Machine Learning (ML) algorithms have shown a high level of accuracy, and applications are widely used in many systems and platforms. However, developing efficient ML-based systems requires addressing three problems: energy-efficiency, robustness, and techniques that typically focus on optimizing for a single objective/have a limited set of goals. This book tackles these challenges by exploiting the unique features of advanced ML models and investigates cross-layer concepts and techniques to engage both hardware and software-level methods to build robust and energy-efficient architectures for these advanced ML networks. More specifically, this book improves the energy efficiency of complex models like CapsNets, through a specialized flow of hardware-level designs and software-level optimizations exploiting the application-driven knowledge of these systems and the error tolerance through approximations and quantization. This book also improves the robustness of ML models, in particular for SNNs executed on neuromorphic hardware, due to their inherent cost-effective features. This book integrates multiple optimization objectives into specialized frameworks for jointly optimizing the robustness and energy efficiency of these systems. This is an important resource for students and researchers of computer and electrical engineering who are interested in developing energy efficient and robust ML.
Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing
Title | Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing PDF eBook |
Author | Sudeep Pasricha |
Publisher | Springer Nature |
Pages | 481 |
Release | 2023-10-09 |
Genre | Technology & Engineering |
ISBN | 3031399323 |
This book presents recent advances towards the goal of enabling efficient implementation of machine learning models on resource-constrained systems, covering different application domains. The focus is on presenting interesting and new use cases of applying machine learning to innovative application domains, exploring the efficient hardware design of efficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques for energy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for achieving even greater energy, reliability, and performance benefits. Discusses efficient implementation of machine learning in embedded, CPS, IoT, and edge computing; Offers comprehensive coverage of hardware design, software design, and hardware/software co-design and co-optimization; Describes real applications to demonstrate how embedded, CPS, IoT, and edge applications benefit from machine learning.
Emerging Non-volatile Memory Technologies
Title | Emerging Non-volatile Memory Technologies PDF eBook |
Author | Wen Siang Lew |
Publisher | Springer Nature |
Pages | 439 |
Release | 2021-01-09 |
Genre | Science |
ISBN | 9811569126 |
This book offers a balanced and comprehensive guide to the core principles, fundamental properties, experimental approaches, and state-of-the-art applications of two major groups of emerging non-volatile memory technologies, i.e. spintronics-based devices as well as resistive switching devices, also known as Resistive Random Access Memory (RRAM). The first section presents different types of spintronic-based devices, i.e. magnetic tunnel junction (MTJ), domain wall, and skyrmion memory devices. This section describes how their developments have led to various promising applications, such as microwave oscillators, detectors, magnetic logic, and neuromorphic engineered systems. In the second half of the book, the underlying device physics supported by different experimental observations and modelling of RRAM devices are presented with memory array level implementation. An insight into RRAM desired properties as synaptic element in neuromorphic computing platforms from material and algorithms viewpoint is also discussed with specific example in automatic sound classification framework.
Neuromorphic Computing Principles and Organization
Title | Neuromorphic Computing Principles and Organization PDF eBook |
Author | Abderazek Ben Abdallah |
Publisher | Springer Nature |
Pages | 260 |
Release | 2022-05-31 |
Genre | Computers |
ISBN | 3030925250 |
This book focuses on neuromorphic computing principles and organization and how to build fault-tolerant scalable hardware for large and medium scale spiking neural networks with learning capabilities. In addition, the book describes in a comprehensive way the organization and how to design a spike-based neuromorphic system to perform network of spiking neurons communication, computing, and adaptive learning for emerging AI applications. The book begins with an overview of neuromorphic computing systems and explores the fundamental concepts of artificial neural networks. Next, we discuss artificial neurons and how they have evolved in their representation of biological neuronal dynamics. Afterward, we discuss implementing these neural networks in neuron models, storage technologies, inter-neuron communication networks, learning, and various design approaches. Then, comes the fundamental design principle to build an efficient neuromorphic system in hardware. The challenges that need to be solved toward building a spiking neural network architecture with many synapses are discussed. Learning in neuromorphic computing systems and the major emerging memory technologies that promise neuromorphic computing are then given. A particular chapter of this book is dedicated to the circuits and architectures used for communication in neuromorphic systems. In particular, the Network-on-Chip fabric is introduced for receiving and transmitting spikes following the Address Event Representation (AER) protocol and the memory accessing method. In addition, the interconnect design principle is covered to help understand the overall concept of on-chip and off-chip communication. Advanced on-chip interconnect technologies, including si-photonic three-dimensional interconnects and fault-tolerant routing algorithms, are also given. The book also covers the main threats of reliability and discusses several recovery methods for multicore neuromorphic systems. This is important for reliable processing in several embedded neuromorphic applications. A reconfigurable design approach that supports multiple target applications via dynamic reconfigurability, network topology independence, and network expandability is also described in the subsequent chapters. The book ends with a case study about a real hardware-software design of a reliable three-dimensional digital neuromorphic processor geared explicitly toward the 3D-ICs biological brain’s three-dimensional structure. The platform enables high integration density and slight spike delay of spiking networks and features a scalable design. We present methods for fault detection and recovery in a neuromorphic system as well. Neuromorphic Computing Principles and Organization is an excellent resource for researchers, scientists, graduate students, and hardware-software engineers dealing with the ever-increasing demands on fault-tolerance, scalability, and low power consumption. It is also an excellent resource for teaching advanced undergraduate and graduate students about the fundamentals concepts, organization, and actual hardware-software design of reliable neuromorphic systems with learning and fault-tolerance capabilities.