Renewable energy conversion systems
Title | Renewable energy conversion systems PDF eBook |
Author | Muhammad Kamran |
Publisher | Academic Press |
Pages | 302 |
Release | 2021-05-15 |
Genre | Science |
ISBN | 0128235985 |
Fundamentals of Renewable Energy Systems goes beyond theoretical aspects of advances in renewable energy and addresses future trends. By focusing on the design of developing technologies, relevant operation and detailed background and an understanding of the application of power electronics and thermodynamics processes in renewable energy, this book provides an analysis of advancing energy systems. The book will be of interest to engineering graduates, researchers, professors and industry professionals involved in the renewable energy sector and is ideal for advanced engineering courses dealing with renewable energy, sources, thermal and electrical energy production and sustainability. With increasing focus on developing low carbon energy production, audiences need to have the engineering knowledge and practical skills to develop and implement creative solutions to engineering problems encountered with renewable energy technologies. By looking at renewable energy capture and conversion, system design and analysis, project development and implementation, each modular chapter examines recent advances in specific renewable energy systems with detailed methods, calculations and worked examples. - Includes recent techniques used to design and model different renewable energy sources (RES) - Demonstrates how to use power electronics in renewable systems - Discusses how to identify, design, integrate and operate the most suitable technologies through key problems
Solar Energy Conversion Systems
Title | Solar Energy Conversion Systems PDF eBook |
Author | Jeffrey R. S. Brownson |
Publisher | Academic Press |
Pages | 471 |
Release | 2013-11-09 |
Genre | Technology & Engineering |
ISBN | 0123973155 |
Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners, and economists. Traditional texts in solar energy engineering have often emerged from mechanical or chemical engineering fields. Instead, Solar Energy Conversion Systems approaches solar energy conversion from the perspectives of integrative design, environmental technology, sustainability science, and materials science in the wake of amazing new thin films, polymers, and glasses developed by the optoelectronics and semiconductor industries. This is a new solar text for the new generation of green job designers and developers. It's highlighted with vignettes that break down solar conversion into useful stories and provides common points of reference, as well as techniques, for effective estimation of evolving technologies. - Contextualizes solar conversion for systems design and implementation in practical applications - Provides a complete understanding of solar power, from underlying science to essential economic outcomes - Analytical approach emphasizes systems simulations from measured irradiance and weather data rather than estimations from "rules of thumb" - Emphasizes integrative design and solar utility, where trans-disciplinary teams can develop sustainable solar solutions that increase client well-being and ecosystems services for a given locale
Energy Harvesting
Title | Energy Harvesting PDF eBook |
Author | Alireza Khaligh |
Publisher | CRC Press |
Pages | 529 |
Release | 2017-12-19 |
Genre | Science |
ISBN | 1351834029 |
Also called energy scavenging, energy harvesting captures, stores, and uses "clean" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, "green" resources and converting them into electrical energy. Recognizing this need, Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems describes various energy harvesting technologies, different topologies, and many types of power electronic interfaces for stand-alone utilization or grid connection of energy harvesting applications. Along with providing all the necessary concepts and theoretical background, the authors develop simulation models throughout the text to build a practical understanding of system analysis and modeling. With a focus on solar energy, the first chapter discusses the I−V characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, sun tracking systems, maximum power point tracking systems, shading effects, and power electronic interfaces for grid-connected and stand-alone PV systems. It also presents sizing criteria for applications and modern solar energy applications, including residential, vehicular, naval, and space applications. The next chapter reviews different types of wind turbines and electrical machines as well as various power electronic interfaces. After explaining the energy generation technologies, optimal operation principles, and possible utilization techniques of ocean tidal energy harvesting, the book explores near- and offshore approaches for harvesting the kinetic and potential energy of ocean waves. It also describes the required absorber, turbine, and generator types, along with the power electronic interfaces for grid connection and commercialized ocean wave energy conversion applications. The final chapter deals with closed, open, and hybrid-cycle ocean thermal energy conversion systems.
Exergy Analysis for Energy Conversion Systems
Title | Exergy Analysis for Energy Conversion Systems PDF eBook |
Author | Efstathios Michaelides |
Publisher | Cambridge University Press |
Pages | 317 |
Release | 2021-04-08 |
Genre | Technology & Engineering |
ISBN | 1108573797 |
Discover a straightforward and holistic look at energy conversion and conservation processes using the exergy concept with this thorough text. Explains the fundamental energy conversion processes in numerous diverse systems, ranging from jet engines and nuclear reactors to human bodies. Provides examples for applications to practical energy conversion processes and systems that use our naturally occurring energy resources, such as fossil fuels, solar energy, wind, geothermal, and nuclear fuels. With more than one-hundred diverse cases and solved examples, readers will be able to perform optimizations for a cleaner environment, a sustainable energy future, and affordable energy generation. An essential tool for practicing scientists and engineers who work or do research in the area of energy and exergy, as well as graduate students and faculty in chemical engineering, mechanical engineering and physics.
Power Electronics in Energy Conversion Systems
Title | Power Electronics in Energy Conversion Systems PDF eBook |
Author | Behrooz Mirafzal |
Publisher | McGraw Hill Professional |
Pages | 464 |
Release | 2021-10-01 |
Genre | Technology & Engineering |
ISBN | 1260463818 |
Learn fundamental concepts of power electronics for conventional and modern energy conversion systems This textbook offers comprehensive coverage of power electronics for the dynamic and steady-state analysis of conventional and modern energy conversion systems. The book includes detailed discussions of power converters for energy conversion techniques in renewable energy systems, grid-interactive inverters, and motor-drives. Written by a seasoned educator, Power Electronics in Energy Conversion Systems contains exclusive topics and features hundreds of helpful illustrations. Readers will gain clear understandings of the concepts through many examples and simulations. Coverage includes: An introduction to power electronics and energy conversion Fundamental concepts in electric and magnetic circuits Principles of electromechanical systems Steady-state analysis of DC-DC converters Dynamics of DC-DC converters Steady-state analysis of inverters Steady-state analysis and control of rectifiers Control and dynamics of grid-interactive inverters Dynamic models of AC machines Control of inverters in motor-drive systems Inverters and high-frequency transients
Model Predictive Control of Wind Energy Conversion Systems
Title | Model Predictive Control of Wind Energy Conversion Systems PDF eBook |
Author | Venkata Yaramasu |
Publisher | John Wiley & Sons |
Pages | 516 |
Release | 2016-12-19 |
Genre | Science |
ISBN | 1118988582 |
Model Predictive Control of Wind Energy Conversion Systems addresses the predicative control strategy that has emerged as a promising digital control tool within the field of power electronics, variable-speed motor drives, and energy conversion systems. The authors provide a comprehensive analysis on the model predictive control of power converters employed in a wide variety of variable-speed wind energy conversion systems (WECS). The contents of this book includes an overview of wind energy system configurations, power converters for variable-speed WECS, digital control techniques, MPC, modeling of power converters and wind generators for MPC design. Other topics include the mapping of continuous-time models to discrete-time models by various exact, approximate, and quasi-exact discretization methods, modeling and control of wind turbine grid-side two-level and multilevel voltage source converters. The authors also focus on the MPC of several power converter configurations for full variable-speed permanent magnet synchronous generator based WECS, squirrel-cage induction generator based WECS, and semi-variable-speed doubly fed induction generator based WECS. Furthermore, this book: Analyzes a wide variety of practical WECS, illustrating important concepts with case studies, simulations, and experimental results Provides a step-by-step design procedure for the development of predictive control schemes for various WECS configurations Describes continuous- and discrete-time modeling of wind generators and power converters, weighting factor selection, discretization methods, and extrapolation techniques Presents useful material for other power electronic applications such as variable-speed motor drives, power quality conditioners, electric vehicles, photovoltaic energy systems, distributed generation, and high-voltage direct current transmission. Explores S-Function Builder programming in MATLAB environment to implement various MPC strategies through the companion website Reflecting the latest technologies in the field, Model Predictive Control of Wind Energy Conversion Systems is a valuable reference for academic researchers, practicing engineers, and other professionals. It can also be used as a textbook for graduate-level and advanced undergraduate courses.
Energy Conversion Systems
Title | Energy Conversion Systems PDF eBook |
Author | Saurabh Mani Tripathi |
Publisher | Nova Science Publishers |
Pages | 386 |
Release | 2021 |
Genre | Science |
ISBN | 9781536192001 |
"This edited book is intended to serve as a resource for engineers, scientists and specialists engaged in becoming familiarized with green energy conversion for a clean atmosphere with an adaption of 'more-renewable' for power generation. The book is comprised of nine original chapters dealing with state-of-the-design exercises on power conversion/storage technologies. It highlights the critical features of energy technology for green engineering for the future. This edited volume is an extensive collection of state-of-the-art studies on the subject"--