Elements Of Stochastic Modelling (Third Edition)
Title | Elements Of Stochastic Modelling (Third Edition) PDF eBook |
Author | Konstantin Borovkov |
Publisher | World Scientific |
Pages | 590 |
Release | 2024-02-08 |
Genre | Mathematics |
ISBN | 9811268401 |
This is a thoroughly revised and expanded third edition of a successful university textbook that provides a broad introduction to key areas of stochastic modelling. The previous edition was developed from lecture notes for two one-semester courses for third-year science and actuarial students at the University of Melbourne.This book reviews the basics of probability theory and presents topics on Markov chains, Markov decision processes, jump Markov processes, elements of queueing theory, basic renewal theory, elements of time series and simulation. It also features elements of stochastic calculus and introductory mathematical finance. This makes the book suitable for a larger variety of university courses presenting the fundamentals of modern stochastic modelling.To make the text covering a lot of material more appealing and accessible to the reader, instead of rigorous proofs we often give only sketches of the arguments, with indications as to why a particular result holds and also how it is related to other results, and illustrate them by examples. It is in this aspect that the present, third edition differs from the second one: the included background material and argument sketches have been extended, made more graphical and informative. The whole text was reviewed and streamlined wherever possible to make the book more attractive and useful for readers. Where appropriate, the book includes references to more specialised texts on respective topics that contain both complete proofs and more advanced material.
An Introduction to Stochastic Modeling
Title | An Introduction to Stochastic Modeling PDF eBook |
Author | Howard M. Taylor |
Publisher | Academic Press |
Pages | 410 |
Release | 2014-05-10 |
Genre | Mathematics |
ISBN | 1483269272 |
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.
Stochastic Modelling for Systems Biology, Third Edition
Title | Stochastic Modelling for Systems Biology, Third Edition PDF eBook |
Author | Darren J. Wilkinson |
Publisher | CRC Press |
Pages | 366 |
Release | 2018-12-07 |
Genre | Mathematics |
ISBN | 1351000896 |
Since the first edition of Stochastic Modelling for Systems Biology, there have been many interesting developments in the use of "likelihood-free" methods of Bayesian inference for complex stochastic models. Having been thoroughly updated to reflect this, this third edition covers everything necessary for a good appreciation of stochastic kinetic modelling of biological networks in the systems biology context. New methods and applications are included in the book, and the use of R for practical illustration of the algorithms has been greatly extended. There is a brand new chapter on spatially extended systems, and the statistical inference chapter has also been extended with new methods, including approximate Bayesian computation (ABC). Stochastic Modelling for Systems Biology, Third Edition is now supplemented by an additional software library, written in Scala, described in a new appendix to the book. New in the Third Edition New chapter on spatially extended systems, covering the spatial Gillespie algorithm for reaction diffusion master equation models in 1- and 2-d, along with fast approximations based on the spatial chemical Langevin equation Significantly expanded chapter on inference for stochastic kinetic models from data, covering ABC, including ABC-SMC Updated R package, including code relating to all of the new material New R package for parsing SBML models into simulatable stochastic Petri net models New open-source software library, written in Scala, replicating most of the functionality of the R packages in a fast, compiled, strongly typed, functional language Keeping with the spirit of earlier editions, all of the new theory is presented in a very informal and intuitive manner, keeping the text as accessible as possible to the widest possible readership. An effective introduction to the area of stochastic modelling in computational systems biology, this new edition adds additional detail and computational methods that will provide a stronger foundation for the development of more advanced courses in stochastic biological modelling.
Elements of Applied Stochastic Processes
Title | Elements of Applied Stochastic Processes PDF eBook |
Author | U. Narayan Bhat |
Publisher | Wiley-Interscience |
Pages | 496 |
Release | 2002-09-06 |
Genre | Mathematics |
ISBN |
The third edition of this volume improves on the last edition by condensing the material and organizing it into a more teachable format. It provides more in-depth coverage of Markov chains and simple Markov process and gives added emphasis to statistical inference in stochastic processes.
Elements of Stochastic Modelling
Title | Elements of Stochastic Modelling PDF eBook |
Author | K. A. Borovkov |
Publisher | World Scientific |
Pages | 360 |
Release | 2003 |
Genre | Mathematics |
ISBN | 9789812383013 |
This textbook has been developed from the lecture notes for a one-semester course on stochastic modelling. It reviews the basics of probability theory and then covers the following topics: Markov chains, Markov decision processes, jump Markov processes, elements of queueing theory, basic renewal theory, elements of time series and simulation. Rigorous proofs are often replaced with sketches of arguments ? with indications as to why a particular result holds, and also how it is connected with other results ? and illustrated by examples. Wherever possible, the book includes references to more specialised texts containing both proofs and more advanced material related to the topics covered.
Stochastic Modeling
Title | Stochastic Modeling PDF eBook |
Author | Nicolas Lanchier |
Publisher | Springer |
Pages | 305 |
Release | 2017-01-27 |
Genre | Mathematics |
ISBN | 3319500384 |
Three coherent parts form the material covered in this text, portions of which have not been widely covered in traditional textbooks. In this coverage the reader is quickly introduced to several different topics enriched with 175 exercises which focus on real-world problems. Exercises range from the classics of probability theory to more exotic research-oriented problems based on numerical simulations. Intended for graduate students in mathematics and applied sciences, the text provides the tools and training needed to write and use programs for research purposes. The first part of the text begins with a brief review of measure theory and revisits the main concepts of probability theory, from random variables to the standard limit theorems. The second part covers traditional material on stochastic processes, including martingales, discrete-time Markov chains, Poisson processes, and continuous-time Markov chains. The theory developed is illustrated by a variety of examples surrounding applications such as the gambler’s ruin chain, branching processes, symmetric random walks, and queueing systems. The third, more research-oriented part of the text, discusses special stochastic processes of interest in physics, biology, and sociology. Additional emphasis is placed on minimal models that have been used historically to develop new mathematical techniques in the field of stochastic processes: the logistic growth process, the Wright –Fisher model, Kingman’s coalescent, percolation models, the contact process, and the voter model. Further treatment of the material explains how these special processes are connected to each other from a modeling perspective as well as their simulation capabilities in C and MatlabTM.
Stochastic Processes
Title | Stochastic Processes PDF eBook |
Author | Peter Watts Jones |
Publisher | CRC Press |
Pages | 255 |
Release | 2017-10-30 |
Genre | Mathematics |
ISBN | 1498778127 |
Based on a well-established and popular course taught by the authors over many years, Stochastic Processes: An Introduction, Third Edition, discusses the modelling and analysis of random experiments, where processes evolve over time. The text begins with a review of relevant fundamental probability. It then covers gambling problems, random walks, and Markov chains. The authors go on to discuss random processes continuous in time, including Poisson, birth and death processes, and general population models, and present an extended discussion on the analysis of associated stationary processes in queues. The book also explores reliability and other random processes, such as branching, martingales, and simple epidemics. A new chapter describing Brownian motion, where the outcomes are continuously observed over continuous time, is included. Further applications, worked examples and problems, and biographical details have been added to this edition. Much of the text has been reworked. The appendix contains key results in probability for reference. This concise, updated book makes the material accessible, highlighting simple applications and examples. A solutions manual with fully worked answers of all end-of-chapter problems, and Mathematica® and R programs illustrating many processes discussed in the book, can be downloaded from crcpress.com.