Elements of Large-Sample Theory

Elements of Large-Sample Theory
Title Elements of Large-Sample Theory PDF eBook
Author E.L. Lehmann
Publisher Springer Science & Business Media
Pages 640
Release 2006-04-18
Genre Mathematics
ISBN 0387227296

Download Elements of Large-Sample Theory Book in PDF, Epub and Kindle

Written by one of the main figures in twentieth century statistics, this book provides a unified treatment of first-order large-sample theory. It discusses a broad range of applications including introductions to density estimation, the bootstrap, and the asymptotics of survey methodology. The book is written at an elementary level making it accessible to most readers.

A Course in Large Sample Theory

A Course in Large Sample Theory
Title A Course in Large Sample Theory PDF eBook
Author Thomas S. Ferguson
Publisher Routledge
Pages 192
Release 2017-09-06
Genre Mathematics
ISBN 1351470051

Download A Course in Large Sample Theory Book in PDF, Epub and Kindle

A Course in Large Sample Theory is presented in four parts. The first treats basic probabilistic notions, the second features the basic statistical tools for expanding the theory, the third contains special topics as applications of the general theory, and the fourth covers more standard statistical topics. Nearly all topics are covered in their multivariate setting.The book is intended as a first year graduate course in large sample theory for statisticians. It has been used by graduate students in statistics, biostatistics, mathematics, and related fields. Throughout the book there are many examples and exercises with solutions. It is an ideal text for self study.

Large Sample Techniques for Statistics

Large Sample Techniques for Statistics
Title Large Sample Techniques for Statistics PDF eBook
Author Jiming Jiang
Publisher Springer Science & Business Media
Pages 612
Release 2010-06-30
Genre Mathematics
ISBN 144196827X

Download Large Sample Techniques for Statistics Book in PDF, Epub and Kindle

In a way, the world is made up of approximations, and surely there is no exception in the world of statistics. In fact, approximations, especially large sample approximations, are very important parts of both theoretical and - plied statistics.TheGaussiandistribution,alsoknownasthe normaldistri- tion,is merelyonesuchexample,dueto thewell-knowncentrallimittheorem. Large-sample techniques provide solutions to many practical problems; they simplify our solutions to di?cult, sometimes intractable problems; they j- tify our solutions; and they guide us to directions of improvements. On the other hand, just because large-sample approximations are used everywhere, and every day, it does not guarantee that they are used properly, and, when the techniques are misused, there may be serious consequences. 2 Example 1 (Asymptotic? distribution). Likelihood ratio test (LRT) is one of the fundamental techniques in statistics. It is well known that, in the 2 “standard” situation, the asymptotic null distribution of the LRT is?,with the degreesoffreedomequaltothe di?erencebetweenthedimensions,de?ned as the numbers of free parameters, of the two nested models being compared (e.g., Rice 1995, pp. 310). This might lead to a wrong impression that the 2 asymptotic (null) distribution of the LRT is always? . A similar mistake 2 might take place when dealing with Pearson’s? -test—the asymptotic distri- 2 2 bution of Pearson’s? -test is not always? (e.g., Moore 1978).

Asymptotic Theory of Statistics and Probability

Asymptotic Theory of Statistics and Probability
Title Asymptotic Theory of Statistics and Probability PDF eBook
Author Anirban DasGupta
Publisher Springer Science & Business Media
Pages 726
Release 2008-03-07
Genre Mathematics
ISBN 0387759700

Download Asymptotic Theory of Statistics and Probability Book in PDF, Epub and Kindle

This unique book delivers an encyclopedic treatment of classic as well as contemporary large sample theory, dealing with both statistical problems and probabilistic issues and tools. The book is unique in its detailed coverage of fundamental topics. It is written in an extremely lucid style, with an emphasis on the conceptual discussion of the importance of a problem and the impact and relevance of the theorems. There is no other book in large sample theory that matches this book in coverage, exercises and examples, bibliography, and lucid conceptual discussion of issues and theorems.

Large Sample Covariance Matrices and High-Dimensional Data Analysis

Large Sample Covariance Matrices and High-Dimensional Data Analysis
Title Large Sample Covariance Matrices and High-Dimensional Data Analysis PDF eBook
Author Jianfeng Yao
Publisher Cambridge University Press
Pages 0
Release 2015-03-26
Genre Mathematics
ISBN 9781107065178

Download Large Sample Covariance Matrices and High-Dimensional Data Analysis Book in PDF, Epub and Kindle

High-dimensional data appear in many fields, and their analysis has become increasingly important in modern statistics. However, it has long been observed that several well-known methods in multivariate analysis become inefficient, or even misleading, when the data dimension p is larger than, say, several tens. A seminal example is the well-known inefficiency of Hotelling's T2-test in such cases. This example shows that classical large sample limits may no longer hold for high-dimensional data; statisticians must seek new limiting theorems in these instances. Thus, the theory of random matrices (RMT) serves as a much-needed and welcome alternative framework. Based on the authors' own research, this book provides a first-hand introduction to new high-dimensional statistical methods derived from RMT. The book begins with a detailed introduction to useful tools from RMT, and then presents a series of high-dimensional problems with solutions provided by RMT methods.

Theory of Point Estimation

Theory of Point Estimation
Title Theory of Point Estimation PDF eBook
Author Erich L. Lehmann
Publisher Springer Science & Business Media
Pages 610
Release 2006-05-02
Genre Mathematics
ISBN 0387227288

Download Theory of Point Estimation Book in PDF, Epub and Kindle

This second, much enlarged edition by Lehmann and Casella of Lehmann's classic text on point estimation maintains the outlook and general style of the first edition. All of the topics are updated, while an entirely new chapter on Bayesian and hierarchical Bayesian approaches is provided, and there is much new material on simultaneous estimation. Each chapter concludes with a Notes section which contains suggestions for further study. This is a companion volume to the second edition of Lehmann's "Testing Statistical Hypotheses".

All of Statistics

All of Statistics
Title All of Statistics PDF eBook
Author Larry Wasserman
Publisher Springer Science & Business Media
Pages 446
Release 2013-12-11
Genre Mathematics
ISBN 0387217363

Download All of Statistics Book in PDF, Epub and Kindle

Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.