Electron Spectroscopies Applied to Low-Dimensional Structures

Electron Spectroscopies Applied to Low-Dimensional Structures
Title Electron Spectroscopies Applied to Low-Dimensional Structures PDF eBook
Author H.P. Hughes
Publisher Springer Science & Business Media
Pages 513
Release 2006-04-11
Genre Science
ISBN 0306471264

Download Electron Spectroscopies Applied to Low-Dimensional Structures Book in PDF, Epub and Kindle

The effect of reduced dimensionality, inherent at the crystallographic level, on the electronic properties of low dimensional materials can be dramatic, leading to structural and electronic instabilities—including supercond- tivity at high temperatures, charge density waves, and localisation—which continue to attract widespread interest. The layered transition metal dichalcogenides have engaged attention for many years, partly arising from the charge density wave effects which some show and the controlled way in which their properties can be modified by intercalation, while the development of epitaxial growth techniques has opened up promising areas based on dichalcogenide heterostructures and quantum wells. The discovery of high-temperature superconducting oxides, and the realisation that polymeric materials too can be exploited in a controlled way for various opto-electronic applications, have further sti- lated interest in the effects of structural dimensionality. It seems timely therefore to draw together some strands of recent research involving a range of disparate materials which share some common char- teristics of low dimensionality. This resulting volume is aimed at researchers with specialist interests in the particular materials discussed but who may also wish to examine the related phenomena observed in different systems, and at a more general solid state audience with broad interests in electronic properties and low dimensional phenomena. Space limitations have required us to be selective as regards particular materials, though we have managed to include those as dissimilar as polymeric semiconductors, superconducting oxides, bronzes and layered chalcogenides.

Electron Spin Resonance and Related Phenomena in Low-Dimensional Structures

Electron Spin Resonance and Related Phenomena in Low-Dimensional Structures
Title Electron Spin Resonance and Related Phenomena in Low-Dimensional Structures PDF eBook
Author Marco Fanciulli
Publisher Springer Science & Business Media
Pages 272
Release 2009-08-24
Genre Science
ISBN 3540793658

Download Electron Spin Resonance and Related Phenomena in Low-Dimensional Structures Book in PDF, Epub and Kindle

Here is a discussion of the state of the art of spin resonance in low dimensional structures, such as two-dimensional electron systems, quantum wires, and quantum dots. Leading scientists report on recent advances and discuss open issues and perspectives.

Two-dimensional Materials

Two-dimensional Materials
Title Two-dimensional Materials PDF eBook
Author Pramoda Kumar Nayak
Publisher BoD – Books on Demand
Pages 282
Release 2016-08-31
Genre Technology & Engineering
ISBN 9535125540

Download Two-dimensional Materials Book in PDF, Epub and Kindle

There are only a few discoveries and new technologies in materials science that have the potential to dramatically alter and revolutionize our material world. Discovery of two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, is one of them. After isolation of graphene from graphite in 2004, a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties, has been created. This book provides a comprehensive view and state-of-the-art knowledge about 2D materials such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD) and so on. It consists of 11 chapters contributed by a team of experts in this exciting field and provides latest synthesis techniques of 2D materials, characterization and their potential applications in energy conservation, electronics, optoelectronics and biotechnology.

New Trends in Intercalation Compounds for Energy Storage

New Trends in Intercalation Compounds for Energy Storage
Title New Trends in Intercalation Compounds for Energy Storage PDF eBook
Author Christian Julien
Publisher Springer Science & Business Media
Pages 655
Release 2012-12-06
Genre Technology & Engineering
ISBN 9401003890

Download New Trends in Intercalation Compounds for Energy Storage Book in PDF, Epub and Kindle

Recent advances in electrochemistry and materials science have opened the way to the evolution of entirely new types of energy storage systems: rechargeable lithium-ion batteries, electrochroms, hydrogen containers, etc., all of which have greatly improved electrical performance and other desirable characteristics. This book encompasses all the disciplines linked in the progress from fundamentals to applications, from description and modelling of different materials to technological use, from general diagnostics to methods related to technological control and operation of intercalation compounds. Designing devices with higher specific energy and power will require a more profound understanding of material properties and performance. This book covers the status of materials and advanced activities based on the development of new substances for energy storage.

Defects in Advanced Electronic Materials and Novel Low Dimensional Structures

Defects in Advanced Electronic Materials and Novel Low Dimensional Structures
Title Defects in Advanced Electronic Materials and Novel Low Dimensional Structures PDF eBook
Author Jan Stehr
Publisher Woodhead Publishing
Pages 309
Release 2018-06-29
Genre Technology & Engineering
ISBN 0081020546

Download Defects in Advanced Electronic Materials and Novel Low Dimensional Structures Book in PDF, Epub and Kindle

Defects in Advanced Electronic Materials and Novel Low Dimensional Structures provides a comprehensive review on the recent progress in solving defect issues and deliberate defect engineering in novel material systems. It begins with an overview of point defects in ZnO and group-III nitrides, including irradiation-induced defects, and then look at defects in one and two-dimensional materials, including carbon nanotubes and graphene. Next, it examines the ways that defects can expand the potential applications of semiconductors, such as energy upconversion and quantum processing. The book concludes with a look at the latest advances in theory. While defect physics is extensively reviewed for conventional bulk semiconductors, the same is far from being true for novel material systems, such as low-dimensional 1D and 0D nanostructures and 2D monolayers. This book fills that necessary gap. - Presents an in-depth overview of both conventional bulk semiconductors and low-dimensional, novel material systems, such as 1D structures and 2D monolayers - Addresses a range of defects in a variety of systems, providing a comparative approach - Includes sections on advances in theory that provide insights on where this body of research might lead

Electron Spectroscopies Applied to Low-Dimensional Structures

Electron Spectroscopies Applied to Low-Dimensional Structures
Title Electron Spectroscopies Applied to Low-Dimensional Structures PDF eBook
Author H. P. Hughes
Publisher
Pages 524
Release 2014-01-15
Genre
ISBN 9789401738675

Download Electron Spectroscopies Applied to Low-Dimensional Structures Book in PDF, Epub and Kindle

Surface Microscopy with Low Energy Electrons

Surface Microscopy with Low Energy Electrons
Title Surface Microscopy with Low Energy Electrons PDF eBook
Author Ernst Bauer
Publisher Springer
Pages 513
Release 2014-07-10
Genre Technology & Engineering
ISBN 1493909355

Download Surface Microscopy with Low Energy Electrons Book in PDF, Epub and Kindle

This book, written by a pioneer in surface physics and thin film research and the inventor of Low Energy Electron Microscopy (LEEM), Spin-Polarized Low Energy Electron Microscopy (SPLEEM) and Spectroscopic Photo Emission and Low Energy Electron Microscopy (SPELEEM), covers these and other techniques for the imaging of surfaces with low energy (slow) electrons. These techniques also include Photoemission Electron Microscopy (PEEM), X-ray Photoemission Electron Microscopy (XPEEM), and their combination with microdiffraction and microspectroscopy, all of which use cathode lenses and slow electrons. Of particular interest are the fundamentals and applications of LEEM, PEEM, and XPEEM because of their widespread use. Numerous illustrations illuminate the fundamental aspects of the electron optics, the experimental setup, and particularly the application results with these instruments. Surface Microscopy with Low Energy Electrons will give the reader a unified picture of the imaging, diffraction, and spectroscopy methods that are possible using low energy electron microscopes.