Computational Electrochemistry

Computational Electrochemistry
Title Computational Electrochemistry PDF eBook
Author S. Paddison
Publisher The Electrochemical Society
Pages 49
Release 2015-12-28
Genre Science
ISBN 1607686511

Download Computational Electrochemistry Book in PDF, Epub and Kindle

Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage

Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage
Title Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage PDF eBook
Author Alejandro A. Franco
Publisher Springer
Pages 253
Release 2015-11-12
Genre Technology & Engineering
ISBN 1447156773

Download Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage Book in PDF, Epub and Kindle

The aim of this book is to review innovative physical multiscale modeling methods which numerically simulate the structure and properties of electrochemical devices for energy storage and conversion. Written by world-class experts in the field, it revisits concepts, methodologies and approaches connecting ab initio with micro-, meso- and macro-scale modeling of components and cells. It also discusses the major scientific challenges of this field, such as that of lithium-ion batteries. This book demonstrates how fuel cells and batteries can be brought together to take advantage of well-established multi-scale physical modeling methodologies to advance research in this area. This book also highlights promising capabilities of such approaches for inexpensive virtual experimentation. In recent years, electrochemical systems such as polymer electrolyte membrane fuel cells, solid oxide fuel cells, water electrolyzers, lithium-ion batteries and supercapacitors have attracted much attention due to their potential for clean energy conversion and as storage devices. This has resulted in tremendous technological progress, such as the development of new electrolytes and new engineering designs of electrode structures. However, these technologies do not yet possess all the necessary characteristics, especially in terms of cost and durability, to compete within the most attractive markets. Physical multiscale modeling approaches bridge the gap between materials’ atomistic and structural properties and the macroscopic behavior of a device. They play a crucial role in optimizing the materials and operation in real-life conditions, thereby enabling enhanced cell performance and durability at a reduced cost. This book provides a valuable resource for researchers, engineers and students interested in physical modelling, numerical simulation, electrochemistry and theoretical chemistry.

Electrochemical Systems

Electrochemical Systems
Title Electrochemical Systems PDF eBook
Author John Newman
Publisher John Wiley & Sons
Pages 671
Release 2012-11-27
Genre Science
ISBN 0471478423

Download Electrochemical Systems Book in PDF, Epub and Kindle

The new edition of the cornerstone text on electrochemistry Spans all the areas of electrochemistry, from the basicsof thermodynamics and electrode kinetics to transport phenomena inelectrolytes, metals, and semiconductors. Newly updated andexpanded, the Third Edition covers important new treatments, ideas,and technologies while also increasing the book's accessibility forreaders in related fields. Rigorous and complete presentation of the fundamentalconcepts In-depth examples applying the concepts to real-life designproblems Homework problems ranging from the reinforcing to the highlythought-provoking Extensive bibliography giving both the historical developmentof the field and references for the practicing electrochemist.

Simulation Science

Simulation Science
Title Simulation Science PDF eBook
Author Marcus Baum
Publisher Springer
Pages 279
Release 2018-08-07
Genre Computers
ISBN 331996271X

Download Simulation Science Book in PDF, Epub and Kindle

This book constitutes the thoroughly refereed proceedings of the Clausthal-Göttingen International Workshop on Simulation Science, held in Göttingen, Germany, in April 2017. The 16 full papers presented were carefully reviewed and selected from 40 submissions. The papers are organized in topical sections on simulation and optimization in networks, simulation of materials, distributed simulations.

Printed Batteries

Printed Batteries
Title Printed Batteries PDF eBook
Author Senentxu Lanceros-Méndez
Publisher John Wiley & Sons
Pages 270
Release 2018-04-23
Genre Technology & Engineering
ISBN 1119287421

Download Printed Batteries Book in PDF, Epub and Kindle

Offers the first comprehensive account of this interesting and growing research field Printed Batteries: Materials, Technologies and Applications reviews the current state of the art for printed batteries, discussing the different types and materials, and describing the printing techniques. It addresses the main applications that are being developed for printed batteries as well as the major advantages and remaining challenges that exist in this rapidly evolving area of research. It is the first book on printed batteries that seeks to promote a deeper understanding of this increasingly relevant research and application area. It is written in a way so as to interest and motivate readers to tackle the many challenges that lie ahead so that the entire research community can provide the world with a bright, innovative future in the area of printed batteries. Topics covered in Printed Batteries include, Printed Batteries: Definition, Types and Advantages; Printing Techniques for Batteries, Including 3D Printing; Inks Formulation and Properties for Printing Techniques; Rheological Properties for Electrode Slurry; Solid Polymer Electrolytes for Printed Batteries; Printed Battery Design; and Printed Battery Applications. Covers everything readers need to know about the materials and techniques required for printed batteries Informs on the applications for printed batteries and what the benefits are Discusses the challenges that lie ahead as innovators continue with their research Printed Batteries: Materials, Technologies and Applications is a unique and informative book that will appeal to academic researchers, industrial scientists, and engineers working in the areas of sensors, actuators, energy storage, and printed electronics.

Porous Media

Porous Media
Title Porous Media PDF eBook
Author F. A.L. Dullien
Publisher Academic Press
Pages 598
Release 2012-12-02
Genre Technology & Engineering
ISBN 0323139337

Download Porous Media Book in PDF, Epub and Kindle

This book examines the relationship between transport properties and pore structure of porous material. Models of pore structure are presented with a discussion of how such models can be used to predict the transport properties of porous media. Portions of the book are devoted to interpretations of experimental results in this area and directions for future research. Practical applications are given where applicable, and are expected to be useful for a large number of different fields, including reservoir engineering, geology, hydrogeology, soil science, chemical process engineering, biomedical engineering, fuel technology, hydrometallurgy, nuclear reactor technology, and materials science. - Presents mechanisms of immiscible and miscible displacement (hydrodynamic dispersion) process in porous media - Examines relationships between pore structure and fluid transport - Considers approaches to enhanced oil recovery - Explores network modeling and perolation theory

The Variational Approach to Fracture

The Variational Approach to Fracture
Title The Variational Approach to Fracture PDF eBook
Author Blaise Bourdin
Publisher Springer Science & Business Media
Pages 173
Release 2008-04-19
Genre Technology & Engineering
ISBN 1402063954

Download The Variational Approach to Fracture Book in PDF, Epub and Kindle

Presenting original results from both theoretical and numerical viewpoints, this text offers a detailed discussion of the variational approach to brittle fracture. This approach views crack growth as the result of a competition between bulk and surface energy, treating crack evolution from its initiation all the way to the failure of a sample. The authors model crack initiation, crack path, and crack extension for arbitrary geometries and loads.