Elastic properties and Ion-mediated domain switching of self-assembled heterostructures CuInP2S6-In4/3P2S6
Title | Elastic properties and Ion-mediated domain switching of self-assembled heterostructures CuInP2S6-In4/3P2S6 PDF eBook |
Author | Xiangping Zhang |
Publisher | OAE Publishing Inc. |
Pages | 12 |
Release | 2023-01-17 |
Genre | Technology & Engineering |
ISBN |
Van der Waals (vdW) ferroelectric CuInP2S6 (CIPS) has attracted intense research interest due to its unique ferroelectric properties that make it promising for potential applications in flexible electronic devices. A mechanical mean, or so-called strain gradient engineering, has been proven as an effective method to modulate its ferroelectric properties, but the key parameter elastic constants Cij has not been accurately measured. Here, we utilized nanoindentation and contact resonance atomic force microscopy (CR-AFM) techniques to measure the elastic modulus on the (001) plane of nanoscale phase separated CuInP2S6-In4/3P2S6 (CIPS-IPS). The Young’s modulus of the CIPS was slightly less than that of the IPS. Density Functional Theory was introduced to obtain the accurate full elastic constant Cij of CIPS and IPS, and we deduced their respective Young’s moduli, all of which are in good agreement with our experimental values. We further discovered the asymmetrical domain switching and proposed an ion-mediated domain switching model. The results provide a reliable experimental reference for strain gradient engineering in the phase field simulation in CIPS-IPS.
Ferroelectric Thin Films
Title | Ferroelectric Thin Films PDF eBook |
Author | Masanori Okuyama |
Publisher | Springer Science & Business Media |
Pages | 272 |
Release | 2005-02-22 |
Genre | Computers |
ISBN | 9783540241638 |
Ferroelectric thin films continue to attract much attention due to their developing applications in memory devices, FeRAM, infrared sensors, piezoelectric sensors and actuators. This book, aimed at students, researchers and developers, gives detailed information about the basic properties of these materials and the associated device physics. The contributing authors are acknowledged experts in the field.
2D Monoelemental Materials (Xenes) and Related Technologies
Title | 2D Monoelemental Materials (Xenes) and Related Technologies PDF eBook |
Author | Zongyu Huang |
Publisher | CRC Press |
Pages | 166 |
Release | 2022-04-19 |
Genre | Science |
ISBN | 1000562840 |
Monoelemental 2D materials called Xenes have a graphene-like structure, intra-layer covalent bond, and weak van der Waals forces between layers. Materials composed of different groups of elements have different structures and rich properties, making Xenes materials a potential candidate for the next generation of 2D materials. 2D Monoelemental Materials (Xenes) and Related Technologies: Beyond Graphene describes the structure, properties, and applications of Xenes by classification and section. The first section covers the structure and classification of single-element 2D materials, according to the different main groups of monoelemental materials of different components and includes the properties and applications with detailed description. The second section discusses the structure, properties, and applications of advanced 2D Xenes materials, which are composed of heterogeneous structures, produced by defects, and regulated by the field. Features include: Systematically detailed single element materials according to the main groups of the constituent elements Classification of the most effective and widely studied 2D Xenes materials Expounding upon changes in properties and improvements in applications by different regulation mechanisms Discussion of the significance of 2D single-element materials where structural characteristics are closely combined with different preparation methods and the relevant theoretical properties complement each other with practical applications Aimed at researchers and advanced students in materials science and engineering, this book offers a broad view of current knowledge in the emerging and promising field of 2D monoelemental materials.
Ferroelectric Thin Films
Title | Ferroelectric Thin Films PDF eBook |
Author | Carlos Paz de Araujo |
Publisher | Taylor & Francis |
Pages | 596 |
Release | 1996 |
Genre | Technology & Engineering |
ISBN | 9782884491891 |
The impetus for the rapid development of thin film technology, relative to that of bulk materials, is its application to a variety of microelectronic products. Many of the characteristics of thin film ferroelectric materials are utilized in the development of these products - namely, their nonvolatile memory and piezoelectric, pyroelectric, and electro-optic properties. It is befitting, therefore, that the first of a set of three complementary books with the general title Integrated Ferroelectric Devices and Technologies focuses on the synthesis of thin film ferroelectric materials and their basic properties. Because it is a basic introduction to the chemistry, materials science, processing, and physics of the materials from which integrated ferroelectrics are made, newcomers to this field as well as veterans will find this book self-contained and invaluable in acquiring the diverse elements requisite to success in their work in this area. It is directed at electronic engineers and physicists as well as process and system engineers, ceramicists, and chemists involved in the research, design, development, manufacturing, and utilization of thin film ferroelectric materials.
Domain Walls
Title | Domain Walls PDF eBook |
Author | Dennis Meier |
Publisher | Oxford University Press |
Pages | 288 |
Release | 2020-08-07 |
Genre | Science |
ISBN | 0192607413 |
Technological evolution and revolution are both driven by the discovery of new functionalities, new materials and the design of yet smaller, faster, and more energy-efficient components. Progress is being made at a breathtaking pace, stimulated by the rapidly growing demand for more powerful and readily available information technology. High-speed internet and data-streaming, home automation, tablets and smartphones are now "necessities" for our everyday lives. Consumer expectations for progressively more data storage and exchange appear to be insatiable. Oxide electronics is a promising and relatively new field that has the potential to trigger major advances in information technology. Oxide interfaces are particularly intriguing. Here, low local symmetry combined with an increased susceptibility to external fields leads to unusual physical properties distinct from those of the homogeneous bulk. In this context, ferroic domain walls have attracted recent attention as a completely new type of oxide interface. In addition to their functional properties, such walls are spatially mobile and can be created, moved, and erased on demand. This unique degree of flexibility enables domain walls to take an active role in future devices and hold a great potential as multifunctional 2D systems for nanoelectronics. With domain walls as reconfigurable electronic 2D components, a new generation of adaptive nano-technology and flexible circuitry becomes possible, that can be altered and upgraded throughout the lifetime of the device. Thus, what started out as fundamental research, at the limit of accessibility, is finally maturing into a promising concept for next-generation technology.
Responsive Nanomaterials for Sustainable Applications
Title | Responsive Nanomaterials for Sustainable Applications PDF eBook |
Author | Ziqi Sun |
Publisher | Springer Nature |
Pages | 305 |
Release | 2020-04-01 |
Genre | Technology & Engineering |
ISBN | 303039994X |
This book addresses the fabrication of responsive functional nanomaterials and their use in sustainable energy and environmental applications. Responsive functional nanomaterials can change their physiochemical properties to adapt to their environment. Accordingly, these novel materials are playing an increasingly important role in a diverse range of applications, such as sensors and actuators, self-healing materials, separation, drug delivery, diagnostics, tissue engineering, functional coatings and textiles. This book reports on the latest advances in responsive functional nanomaterials in a wide range of applications and will appeal to a broad readership across the fields of materials, chemistry, sustainable energy, environmental science and nanotechnology.
Micro Light Emitting Diode: Fabrication and Devices
Title | Micro Light Emitting Diode: Fabrication and Devices PDF eBook |
Author | Jong-Hyun Ahn |
Publisher | Springer |
Pages | 160 |
Release | 2022-01-06 |
Genre | Science |
ISBN | 9789811655043 |
This book focuses on basic fundamental and applied aspects of micro-LED, ranging from chip fabrication to transfer technology, panel integration, and various applications in fields ranging from optics to electronics to and biomedicine. The focus includes the most recent developments, including the uses in large large-area display, VR/AR display, and biomedical applications. The book is intended as a reference for advanced students and researchers with backgrounds in optoelectronics and display technology. Micro-LEDs are thin, light-emitting diodes, which have attracted considerable research interest in the last few years. They exhibit a set of exceptional properties and unique optical, electrical, and mechanical behaviors of fundamental interest, with the capability to support a range of important exciting applications that cannot be easily addressed with other technologies. The content is divided into two parts to make the book approachable to readers of various backgrounds and interests. The first provides a detailed description with fundamental materials and production approaches and assembly/manufacturing strategies designed to target readers who seek an understanding ofof essential materials and production approaches and assembly/manufacturing strategies designed to target readers who want to understand the foundational aspects. The second provides detailed, comprehensive coverage of the wide range of device applications that have been achieved. This second part targets readers who seek a detailed account of the various applications that are enabled by micro-LEDs.