Modeling and Prediction of Polymer Nanocomposite Properties
Title | Modeling and Prediction of Polymer Nanocomposite Properties PDF eBook |
Author | Vikas Mittal |
Publisher | John Wiley & Sons |
Pages | 312 |
Release | 2012-12-07 |
Genre | Technology & Engineering |
ISBN | 3527644350 |
The book series 'Polymer Nano-, Micro- and Macrocomposites' provides complete and comprehensive information on all important aspects of polymer composite research and development, including, but not limited to synthesis, filler modification, modeling, characterization as well as application and commercialization issues. Each book focuses on a particular topic and gives a balanced in-depth overview of the respective subfi eld of polymer composite science and its relation to industrial applications. With the books the readers obtain dedicated resources with information relevant to their research, thereby helping to save time and money. This book lays the theoretical foundations and emphasizes the close connection between theory and experiment to optimize models and real-life procedures for the various stages of polymer composite development. As such, it covers quantum-mechanical approaches to understand the chemical processes on an atomistic level, molecular mechanics simulations to predict the filler surface dynamics, finite element methods to investigate the macro-mechanical behavior, and thermodynamic models to assess the temperature stability. The whole is rounded off by a look at multiscale models that can simulate properties at various length and time scales in one go - and with predictive accuracy.
Optimization of Polymer Nanocomposite Properties
Title | Optimization of Polymer Nanocomposite Properties PDF eBook |
Author | Vikas Mittal |
Publisher | John Wiley & Sons |
Pages | 440 |
Release | 2009-12-09 |
Genre | Technology & Engineering |
ISBN | 9783527629282 |
A one-stop resource for researchers and developers alike, this book covers a plethora of nanocomposite properties and their enhancement mechanisms. With contributors from industry as well as academia, each chapter elucidates in detail the mechanisms to achieve a certain functionality of the polymer nanocomposite, such as improved biodegradability, increased chemical resistance and tribological performance. Special emphasis is laid on the interdependence of the factors that affect the nanocomposite properties such that readers obtain the information necessary to synthesize the polymer materials according to the requirements of their respective applications.
Fundamentals, Properties, and Applications of Polymer Nanocomposites
Title | Fundamentals, Properties, and Applications of Polymer Nanocomposites PDF eBook |
Author | Joseph H. Koo |
Publisher | Cambridge University Press |
Pages | 719 |
Release | 2016-10-31 |
Genre | Technology & Engineering |
ISBN | 1316094413 |
This book is focused primarily on polymer nanocomposites, based on the author's research experience as well as open literature. The environmental health and safety aspects of nanomaterials and polymer nanocomposites, risk assessment and safety standards, and fire toxicity of polymer nanocomposites, are studied. In the final chapter, a brief overview of opportunities, trends, and challenges of polymer nanocomposites are included. Throughout the book, the theme is developed that polymer nanocomposites are a whole family of polymeric materials whose properties are capable of being tailored to meet specific applications. This volume serves as a general introduction to students and researchers just entering the field and to scholars from other subfields seeking information.
Micromechanics of Composite Materials
Title | Micromechanics of Composite Materials PDF eBook |
Author | Jacob Aboudi |
Publisher | Butterworth-Heinemann |
Pages | 1032 |
Release | 2013 |
Genre | Technology & Engineering |
ISBN | 0123970350 |
Summary: A Generalized Multiscale Analysis Approach brings together comprehensive background information on the multiscale nature of the composite, constituent material behaviour, damage models and key techniques for multiscale modelling, as well as presenting the findings and methods, developed over a lifetime's research, of three leading experts in the field. The unified approach presented in the book for conducting multiscale analysis and design of conventional and smart composite materials is also applicable for structures with complete linear and nonlinear material behavior, with numerous applications provided to illustrate use. Modeling composite behaviour is a key challenge in research and industry; when done efficiently and reliably it can save money, decrease time to market with new innovations and prevent component failure.
Mechanics of Particle- and Fiber-Reinforced Polymer Nanocomposites
Title | Mechanics of Particle- and Fiber-Reinforced Polymer Nanocomposites PDF eBook |
Author | Sumit Sharma |
Publisher | John Wiley & Sons |
Pages | 322 |
Release | 2021-03-03 |
Genre | Technology & Engineering |
ISBN | 1119653622 |
Learn to model your own problems for predicting the properties of polymer-based composites Mechanics of Particle- and Fiber-Reinforced Polymer Nanocomposites: Nanoscale to Continuum Simulations provides readers with a thorough and up-to-date overview of nano, micro, and continuum approaches for the multiscale modeling of polymer-based composites. Covering nanocomposite development, theoretical models, and common simulation methods, the text includes a variety of case studies and scripting tutorials that enable readers to apply and further develop the supplied simulations. The book describes the foundations of molecular dynamics and continuum mechanics methods, guides readers through the basic steps required for multiscale modeling of any material, and correlates the results between the experimental and theoretical work performed. Focused primarily on nanocomposites, the methods covered in the book are applicable to various other materials such as carbon nanotubes, polymers, metals, and ceramics. Throughout the book, readers are introduced to key topics of relevance to nanocomposite materials and structures—supported by journal articles that discuss recent developments in modeling techniques and in the prediction of mechanical and thermal properties. This timely, highly practical resource: Explains the molecular dynamics (MD) simulation procedure for nanofiber and nanoparticle reinforced polymer composites Compares results of experimental and theoretical results from mechanical models at different length scales Covers different types of fibers and matrix materials that constitute composite materials, including glass, boron, carbon, and Kevlar Reviews models that predict the stiffness of short-fiber composites, including the self-consistent model for finite-length fibers, bounding models, and the Halpin-Tsai equation Describes various molecular modeling methods such as Monte Carlo, Brownian dynamics, dissipative particle dynamics, and lattice Boltzmann methods Highlights the potential of nanocomposites for defense and space applications Perfect for materials scientists, materials engineers, polymer scientists, and mechanical engineers, Mechanics of Particle- and Fiber-Reinforced Polymer Nanocomposites is also a must-have reference for computer simulation scientists seeking to improve their understanding of reinforced polymer nanocomposites.
Polymer Composites, Nanocomposites
Title | Polymer Composites, Nanocomposites PDF eBook |
Author | Sabu Thomas |
Publisher | John Wiley & Sons |
Pages | 294 |
Release | 2013-04-16 |
Genre | Technology & Engineering |
ISBN | 352765240X |
Polymer composites are materials in which the matrix polymer isreinforced with organic/inorganic fillers of a definite size andshape, leading to enhanced performance of the resultant composite.These materials find a wide number of applications in such diversefields as geotextiles, building, electronics, medical, packaging,and automobiles. This first systematic reference on the topic emphasizes thecharacteristics and dimension of this reinforcement. The authors are leading researchers in the field from academia,government, industry, as well as private research institutionsacross the globe, and adopt a practical approach here, coveringsuch aspects as the preparation, characterization, properties andtheory of polymer composites. The book begins by discussing the state of the art, new challenges,and opportunities of various polymer composite systems. Interfacialcharacterization of the composites is discussed in detail, as isthe macro- and micromechanics of the composites. Structure-propertyrelationships in various composite systems are explained with thehelp of theoretical models, while processing techniques for variousmacro- to nanocomposite systems and the influence of processingparameters on the properties of the composite are reviewed indetail. The characterization of microstructure, elastic,viscoelastic, static and dynamic mechanical, thermal, tribological,rheological, optical, electrical and barrier properties arehighlighted, as well as their myriad applications. Divided into three volumes: Vol. 1. Macro- and Microcomposites;Vol. 2. Nanocomposites; and Vol. 3. Biocomposites.
Theory and Modeling of Polymer Nanocomposites
Title | Theory and Modeling of Polymer Nanocomposites PDF eBook |
Author | Valeriy V. Ginzburg |
Publisher | Springer Nature |
Pages | 330 |
Release | 2020-12-16 |
Genre | Technology & Engineering |
ISBN | 3030604438 |
This edited volume brings together the state of the art in polymer nanocomposite theory and modeling, creating a roadmap for scientists and engineers seeking to design new advanced materials. The book opens with a review of molecular and mesoscale models predicting equilibrium and non-equilibrium nanoscale structure of hybrid materials as a function of composition and, especially, filler types. Subsequent chapters cover the methods and analyses used for describing the dynamics of nanocomposites and their mechanical and physical properties. Dedicated chapters present best practices for predicting materials properties of practical interest, including thermal and electrical conductivity, optical properties, barrier properties, and flammability. Each chapter is written by leading academic and industrial scientists working in each respective sub-field. The overview of modeling methodology combined with detailed examples of property predictions for specific systems will make this book useful for academic and industrial practitioners alike.