Effect of Heat Treatments and Reduced Absorber Layer Thickness on Cu(in, Ga)se2 Thin Film Solar Cells

Effect of Heat Treatments and Reduced Absorber Layer Thickness on Cu(in, Ga)se2 Thin Film Solar Cells
Title Effect of Heat Treatments and Reduced Absorber Layer Thickness on Cu(in, Ga)se2 Thin Film Solar Cells PDF eBook
Author Vinodh Chandrasekaran
Publisher
Pages
Release 2005
Genre
ISBN

Download Effect of Heat Treatments and Reduced Absorber Layer Thickness on Cu(in, Ga)se2 Thin Film Solar Cells Book in PDF, Epub and Kindle

The thickness of the Molybdenum back contact layer was increased to see if the amount of Sodium from the substrate had any effect on the device performance. The Ga/In ratio was altered and its effect was also studied. The 0.65um thick devices showed a large reduction in Voc̕s and Jsc̕s. The effect of Selenization time and Selenium flux during Selenization were studied at each of the different thicknesses.

Alternative Buffer Layer Development in Cu(In,Ga)Se2 Thin Film Solar Cells

Alternative Buffer Layer Development in Cu(In,Ga)Se2 Thin Film Solar Cells
Title Alternative Buffer Layer Development in Cu(In,Ga)Se2 Thin Film Solar Cells PDF eBook
Author Peipei Xin
Publisher
Pages 144
Release 2017
Genre
ISBN 9781369681130

Download Alternative Buffer Layer Development in Cu(In,Ga)Se2 Thin Film Solar Cells Book in PDF, Epub and Kindle

Cu(In,Ga)Se2-based thin film solar cells are considered to be one of the most promising photovoltaic technologies. Cu(In,Ga)Se2 (CIGS) solar devices have the potential advantage of low-cost, fast fabrication by using semiconductor layers of only a few micrometers thick and high efficiency photovoltaics have been reported at both the cell and the module levels. CdS via chemical bath deposition (CBD) has been the most widely used buffer option to form the critical junction in CIGS-based thin film photovoltaic devices. However, the disadvantages of CdS can’t be ignored - regulations on cadmium usage are getting stricter primarily due to its toxicity and environmental impacts, and the proper handling of the large amount of toxic chemical bath waste is a massive and expensive task. ☐ This dissertation is devoted to the development of Cd-free alternative buffer layers in CIGS-based thin film solar cells. Based on the considerations of buffer layer selection criteria and extensive literature review, Zn-compound buffer materials are chosen as the primary investigation candidates. Radio frequency magnetron sputtering is the preferred buffer deposition approach since it’s a clean and more controllable technique compared to CBD, and is readily scaled to large area manufacturing. ☐ First, a comprehensive study of the ZnSe1-xOx compound prepared by reactive sputtering was completed. As the oxygen content in the reactive sputtering gas increased, ZnSe1-xOx crystallinity and bandgap decreased. It’s observed that oxygen miscibility in ZnSe was low and a secondary phase formed when the O2 / (O2 + Ar) ratio in the sputtering gas exceeded 2%. Two approaches were proposed to optimize the band alignment between the CIGS and buffer layer. One method focused on the bandgap engineering of the absorber, the other focused on the band structure modification of the buffer. As a result, improved current of the solar cell was achieved although a carrier transport barrier at the junction interface still limited the device performance. ☐ Second, an investigation of Zn(S,O) buffer layers was completed. Zn(S,O) films were sputtered in Ar using a ZnO0.7S0.3 compound target. Zn(S,O) films had the composition close to the target with S / (S+O) ratio around 0.3. Zn(S,O) films showed the wurtzite structure with the bandgap about 3.2eV. The champion Cu(In,Ga)Se2 / Zn(S,O) cell had 12.5% efficiency and an (Ag,Cu)(In,Ga)Se2 / Zn(S,O) cell achieved 13.2% efficiency. Detailed device analysis was used to study the Cu(In,Ga)Se2 and (Ag,Cu)(In,Ga)Se2 absorbers, the influence of absorber surface treatments, the effects of device treatments, the sputtering damage and the Na concentration in the absorber. ☐ Finally alternative buffer layer development was applied to an innovative superstrate CIGS configuration. The superstrate structure has potential benefits of improved window layer properties, cost reduction, and the possibility to implement back reflector engineering techniques. The application of three buffer layer options – CdS, ZnO and ZnSe was studied and limitations of each were characterized. The best device achieved 8.6% efficiency with a ZnO buffer. GaxOy formation at the junction interface was the main limiting factor of this device performance. For CdS / CIGS and ZnSe / CIGS superstrate devices extensive inter-diffusion between the absorber and buffer layer under CIGS growth conditions was the critical problem. Inter-diffusion severely deteriorated the junction quality and led to poorly behaved devices, despite different efforts to optimize the fabrication process.

Surface Treatment of CuInGaSe2 Thin Films and Its Effect on the Photovoltaic Properties of Solar Cells

Surface Treatment of CuInGaSe2 Thin Films and Its Effect on the Photovoltaic Properties of Solar Cells
Title Surface Treatment of CuInGaSe2 Thin Films and Its Effect on the Photovoltaic Properties of Solar Cells PDF eBook
Author
Publisher
Pages
Release 2002
Genre Solar cells
ISBN

Download Surface Treatment of CuInGaSe2 Thin Films and Its Effect on the Photovoltaic Properties of Solar Cells Book in PDF, Epub and Kindle

Development of Non-vacuum and Low-cost Techniques for Cu(In, Ga)(Se, S)2 Thin Film Solar Cell Processing

Development of Non-vacuum and Low-cost Techniques for Cu(In, Ga)(Se, S)2 Thin Film Solar Cell Processing
Title Development of Non-vacuum and Low-cost Techniques for Cu(In, Ga)(Se, S)2 Thin Film Solar Cell Processing PDF eBook
Author Christopher J. Hibberd
Publisher
Pages
Release 2009
Genre
ISBN

Download Development of Non-vacuum and Low-cost Techniques for Cu(In, Ga)(Se, S)2 Thin Film Solar Cell Processing Book in PDF, Epub and Kindle

Solar photovoltaic modules provide clean electricity from sunlight but will not be able tocompete on an open market until the cost of the electricity they produce is comparable to thatproduced by traditional methods. At present, modules based on crystalline silicon wafer solarcells account for nearly 90% of photovoltaic production capacity. However, it is anticipatedthat the ultimate cost reduction achievable for crystalline silicon solar cell production will besomewhat limited and that thin film solar cells may offer a cheaper alternative in the longterm. The highest energy conversion efficiencies reported for thin film solar cells have beenfor devices based around chalcopyrite Cu(In, Ga)(Se, S)2 photovoltaic absorbers. The most efficient Cu(In, Ga)(Se, S)2 solar cells contain absorber layers deposited by vacuumco-evaporation of the elements. However, the cost of ownership of large area vacuumevaporation technology is high and may be a limiting factor in the cost reductions achievablefor Cu(In, Ga)(Se, S)2 based solar cells. Therefore, many alternative deposition methods areunder investigation. Despite almost thirty companies being in the process of commercialisingthese technologies there is no consensus as to which deposition method will lead to the mostcost effective product. Non-vacuum deposition techniques involving powders and chemical solutions potentiallyoffer significant reductions in the cost of Cu(In, Ga)(Se, S)2 absorber layer deposition ascompared to their vacuum counterparts. A wide range of such approaches has beeninvestigated for thirty years and the gap between the world record Cu(In, Ga)(Se, S)2 solarcell and the best devices containing non-vacuum deposited absorber layers has closedsignificantly in recent years. Nevertheless, no one technique has demonstrated its superiorityand the best results are still achieved with some of the most complex approaches. The work presented here involved the development and investigation of a new process forperforming one of the stages of non-vacuum deposition of Cu(In, Ga)(Se, S)2 absorber layers. The new process incorporates copper into an initial Group III-VI precursor layer, e.g. indiumgallium selenide, through an ion exchange reaction performed in solution. The ion exchangereaction requires only very simple, low-cost equipment and proceeds at temperatures over1000?C lower than required for the evaporation of Cu under vacuum. In the new process, indium (gallium) selenide initial precursor layers are immersed insolutions containing Cu ions. During immersion an exchange reaction occurs and Cu ionsfrom the solution exchange places with Group III ions in the layer. This leads to theformation of an intimately bonded, laterally homogeneous copper selenide? indium (gallium)selenide modified precursor layer with the same morphology as the initial precursor. These modified precursor layers were converted to single phase chalcopyrite CuInSe2 andCu(In, Ga)Se2 by annealing with Se in a tube furnace system. Investigation of the annealingtreatment revealed that a series of phase transformations, beginning at low temperature, leadto chalcopyrite formation. Control of the timing of the Se supply was demonstrated toprevent reactions that were deemed detrimental to the morphology of the resultingchalcopyrite layers. When vacuum evaporated indium (gallium) selenide layers were used asinitial precursors, solar cells produced from the absorber layers exhibited energy conversionefficiencies of up to 4%. While these results are considered promising, the devices werecharacterised by very low open circuit voltages and parallel resistances. Rapid thermal processing was applied to the modified precursor layers in an attempt tofurther improve their conversion into chalcopyrite material. Despite only a small number ofsolar cells being fabricated using rapid thermal processing, improvements in open circuitvoltage of close to 150mV were achieved. However, due to increases in series resistance andreductions in current collection only small increases in solar cell efficiency were recorded. Rapid thermal processing was also used to demonstrate synthesis of single phase CuInS2from modified precursor layers based on non-vacuum deposited indium sulphide. Non-vacuum deposition methods provide many opportunities for the incorporation ofundesirable impurities into the deposited layers. Analysis of the precursor layers developedduring this work revealed that alkali atoms from the complexant used in the ion exchangebaths are incorporated into the precursor layers alongside the Cu. Alkali atoms exhibitpronounced electronic and structural effects on Cu(In, Ga)Se2 layers and are beneficial in lowconcentrations. However, excess alkali atoms are detrimental to Cu(In, Ga)Se2 solar cellperformance and the problems encountered with cells produced here are consistent with theeffects reported in the literature for excess alkali incorporation. It is therefore expected thatfurther improvements in solar cell efficiency might be achieved following reformulation ofthe ion exchange bath chemistry.

Electrical & Electronics Abstracts

Electrical & Electronics Abstracts
Title Electrical & Electronics Abstracts PDF eBook
Author
Publisher
Pages 1860
Release 1997
Genre Electrical engineering
ISBN

Download Electrical & Electronics Abstracts Book in PDF, Epub and Kindle

Organic, Inorganic and Hybrid Solar Cells

Organic, Inorganic and Hybrid Solar Cells
Title Organic, Inorganic and Hybrid Solar Cells PDF eBook
Author Ching-Fuh Lin
Publisher John Wiley & Sons
Pages 278
Release 2012-09-04
Genre Technology & Engineering
ISBN 1118168534

Download Organic, Inorganic and Hybrid Solar Cells Book in PDF, Epub and Kindle

Provides detailed descriptions of organic, inorganic, and hybrid solar cells and the latest developments in the quest to produce low-cost, long-lasting solar cells What will it take to transform solar energy from an important alternative source to a truly competitive and, perhaps, dominant one? Lower cost and longer life. Organic, Inorganic, and Hybrid Solar Cells: Principles and Practice provides in-depth information on the three types of existing solar cells, giving readers a good foundation for evaluating the technologies with the most potential for competing with energy from fossil fuels. Featuring a Foreword written by Nobel Peace Prize co-winner Dr. Woodrow W. Clark, this timely and comprehensive guide: Focuses on the realization of low-cost and long-life solar cells study and applications Reviews the properties of inorganic materials, primarily semiconductors Explores the electrical and optical properties of organic materials Discusses the interfacing of organic and inorganic materials: compatibility of deposition, the adhesion problem, formation of surface states, and band-level realignment Provides a detailed description of organic-inorganic hybrid solar cells, from the basic principles to practical devices Introduces a sandwiched structure for hybrid solar cells, which combines a far lower production cost than inorganic solar cells while stabilizing and extending the life of organic material far beyond that of organic solar cells Organic, Inorganic, and Hybrid Solar Cells: Principles and Practice is a first-rate professional reference for electrical engineers and important supplemental reading for graduate students in related areas of study.

Optimization of Process Parameters for Reduced Thickness CIGSeS Thin Film Solar Cells

Optimization of Process Parameters for Reduced Thickness CIGSeS Thin Film Solar Cells
Title Optimization of Process Parameters for Reduced Thickness CIGSeS Thin Film Solar Cells PDF eBook
Author Shirish A. Pethe
Publisher
Pages 116
Release 2010
Genre Copper indium selenide
ISBN

Download Optimization of Process Parameters for Reduced Thickness CIGSeS Thin Film Solar Cells Book in PDF, Epub and Kindle

With further optimization of the reaction process of the absorber layer as well as the other layers higher efficiencies can be achieved. The effect of sodium on the device performance is experimentally verified in this work. To the best of our knowledge the detrimental effect of excess sodium has been verified by experimental data and effort has been made to correlate the variation in PV parameter to theoretical models of effect of sodium. It has been a regular practice to deposit thin barrier layer prior to molybdenum deposition to reduce the micrononuniformities caused due to nonuniform out diffusion of sodium from the soda lime glass. However, it was proven in this work that an optimally thick barrier layer is necessary to reduce the out diffusion of sodium to negligible quantities and thus reduce the micrononuniformities. Molybdenum back contact deposition is a bottleneck in high volume manufacturing due to the current state of art where multi layer molybdenum film needs to be deposited to achieve the required properties. In order to understand and solve this problem experiments were carried out. The effect of working distance (distance between the target and the substrate) on film properties was studied and is presented in this work. During the course of this work efforts were taken to carry out a systematic and detailed study of some of the fundamental issues related to CIGS technology and particular for high volume manufacturing of CIGS PV modules and lay a good foundation for further improvement of PV performance of CIGS thin film solar cells prepared by the two step process of selenization and sulfurization of sputtered metallic precursors.