Edge Intelligence
Title | Edge Intelligence PDF eBook |
Author | Javid Taheri |
Publisher | Springer Nature |
Pages | 254 |
Release | 2023-06-14 |
Genre | Computers |
ISBN | 3031221559 |
This graduate-level textbook is ideally suited for lecturing the most relevant topics of Edge Computing and its ties to Artificial Intelligence (AI) and Machine Learning (ML) approaches. It starts from basics and gradually advances, step-by-step, to ways AI/ML concepts can help or benefit from Edge Computing platforms. The book is structured into seven chapters; each comes with its own dedicated set of teaching materials (practical skills, demonstration videos, questions, lab assignments, etc.). Chapter 1 opens the book and comprehensively introduces the concept of distributed computing continuum systems that led to the creation of Edge Computing. Chapter 2 motivates the use of container technologies and how they are used to implement programmable edge computing platforms. Chapter 3 introduces ways to employ AI/ML approaches to optimize service lifecycles at the edge. Chapter 4 goes deeper in the use of AI/ML and introduces ways to optimize spreading computational tasks along edge computing platforms. Chapter 5 introduces AI/ML pipelines to efficiently process generated data on the edge. Chapter 6 introduces ways to implement AI/ML systems on the edge and ways to deal with their training and inferencing procedures considering the limited resources available at the edge-nodes. Chapter 7 motivates the creation of a new orchestrator independent object model to descriptive objects (nodes, applications, etc.) and requirements (SLAs) for underlying edge platforms. To provide hands-on experience to students and step-by-step improve their technical capabilities, seven sets of Tutorials-and-Labs (TaLs) are also designed. Codes and Instructions for each TaL is provided on the book website, and accompanied by videos to facilitate their learning process.
Edge Intelligence in the Making
Title | Edge Intelligence in the Making PDF eBook |
Author | Sen Lin |
Publisher | Springer Nature |
Pages | 17 |
Release | 2022-06-01 |
Genre | Computers |
ISBN | 3031023803 |
With the explosive growth of mobile computing and Internet of Things (IoT) applications, as exemplified by AR/VR, smart city, and video/audio surveillance, billions of mobile and IoT devices are being connected to the Internet, generating zillions of bytes of data at the network edge. Driven by this trend, there is an urgent need to push the frontiers of artificial intelligence (AI) to the network edge to fully unleash the potential of IoT big data. Indeed, the marriage of edge computing and AI has resulted in innovative solutions, namely edge intelligence or edge AI. Nevertheless, research and practice on this emerging inter-disciplinary field is still in its infancy stage. To facilitate the dissemination of the recent advances in edge intelligence in both academia and industry, this book conducts a comprehensive and detailed survey of the recent research efforts and also showcases the authors' own research progress on edge intelligence. Specifically, the book first reviews the background and present motivation for AI running at the network edge. Next, it provides an overview of the overarching architectures, frameworks, and emerging key technologies for deep learning models toward training/inference at the network edge. To illustrate the research problems for edge intelligence, the book also showcases four of the authors' own research projects on edge intelligence, ranging from rigorous theoretical analysis to studies based on realistic implementation. Finally, it discusses the applications, marketplace, and future research opportunities of edge intelligence. This emerging interdisciplinary field offers many open problems and yet also tremendous opportunities, and this book only touches the tip of iceberg. Hopefully, this book will elicit escalating attention, stimulate fruitful discussions, and open new directions on edge intelligence.
Integrating Edge Intelligence and Blockchain
Title | Integrating Edge Intelligence and Blockchain PDF eBook |
Author | Xiaofei Wang |
Publisher | Springer Nature |
Pages | 118 |
Release | 2022-09-21 |
Genre | Technology & Engineering |
ISBN | 3031101863 |
This book examines whether the integration of edge intelligence (EI) and blockchain (BC) can open up new horizons for providing ubiquitous intelligent services. Accordingly, the authors conduct a summarization of the recent research efforts on the existing works for EI and BC, further painting a comprehensive picture of the limitation of EI and why BC could benefit EI. To examine how to integrate EI and BC, the authors discuss the BC-driven EI and tailoring BC to EI, including an overview, motivations, and integrated frameworks. Finally, some challenges and future directions are explored. The book explores the technologies associated with the integrated system between EI and BC, and further bridges the gap between immature BC and EI-amicable BC. Explores the integration of edge intelligence (EI) and blockchain (BC), including their integrated motivations, frameworks and challenges; Presents how BC-driven EI can realize computing-power management, data administration, and model optimization; Describes how to tailor BC to better support EI, including flexible consensus protocol, effective incentive mechanism, intellectuality smart contract, and scalable BC system tailoring; Presents some key research challenges and future directions for the integrated system.
IoT Edge Intelligence
Title | IoT Edge Intelligence PDF eBook |
Author | Souvik Pal |
Publisher | Springer Nature |
Pages | 392 |
Release | |
Genre | |
ISBN | 3031583884 |
Reconnoitering the Landscape of Edge Intelligence in Healthcare
Title | Reconnoitering the Landscape of Edge Intelligence in Healthcare PDF eBook |
Author | Suneeta Satpathy |
Publisher | CRC Press |
Pages | 292 |
Release | 2024-04-23 |
Genre | Computers |
ISBN | 1000894932 |
The revolution in healthcare as well as demand for efficient real-time healthcare services are driving the progression of edge computing, AI-mediated techniques, deep learning, and IoT applications for healthcare industries and cloud computing. Edge computing helps to meet the demand for newer and more sophisticated healthcare systems that are more personalized and that match the speed of modern life. With applications of edge computing, automated intelligence and intuitions are incorporated into existing healthcare analysis tools for identifying, forecasting, and preventing high-risk diseases. Reconnoitering the Landscape of Edge Intelligence in Healthcare provides comprehensive research on edge intelligence technology with the emphasis on application in the healthcare industry. It covers all the various areas of edge intelligence for data analysis in healthcare, looking at the emerging technologies such as AI-based techniques, machine learning, IoT, cloud computing, and deep learning with illustrations of the design, implementation, and management of smart and intelligent healthcare systems. Chapters showcase the advantages and highlights of the adoption of the intelligent edge models toward smart healthcare infrastructure. The book also addresses the increased need for a high level of medical data security while transferring real-time data to cloud-based architecture, a matter of prime concern for both patient and doctor. Topics include edge intelligence for wearable sensor technologies and their applications for health monitoring, the various edge computing techniques for disease prediction, e-health services and e-security solutions through IoT devices that aim to improve the quality of care for transgender patients, smart technology in ambient assisted living, the role of edge intelligence in limiting virus spread during pandemics, neuroscience in decoding and analysis of visual perception from the neural patterns and visual image reconstruction, and more. The technology addressed include energy aware cross-layer routing protocol (ECRP), OMKELM-IDS technique, graphical user interface (GUI), IOST (an ultra-fast, decentralized blockchain platform), etc. This volume will be helpful to engineering students, research scholars, and manufacturing industry professionals in the fields of engineering applications initiatives on AI, machine learning, and deep learning techniques for edge computing.
TinyML for Edge Intelligence in IoT and LPWAN Networks
Title | TinyML for Edge Intelligence in IoT and LPWAN Networks PDF eBook |
Author | Bharat S Chaudhari |
Publisher | Elsevier |
Pages | 520 |
Release | 2024-05-29 |
Genre | Computers |
ISBN | 0443222037 |
Recently, Tiny Machine Learning (TinyML) has gained incredible importance due to its capabilities of creating lightweight machine learning (ML) frameworks aiming at low latency, lower energy consumption, lower bandwidth requirement, improved data security and privacy, and other performance necessities. As billions of battery-operated embedded IoT and low power wide area networks (LPWAN) nodes with very low on-board memory and computational capabilities are getting connected to the Internet each year, there is a critical need to have a special computational framework like TinyML. TinyML for Edge Intelligence in IoT and LPWAN Networks presents the evolution, developments, and advances in TinyML as applied to IoT and LPWANs. It starts by providing the foundations of IoT/LPWANs, low power embedded systems and hardware, the role of artificial intelligence and machine learning in communication networks in general and cloud/edge intelligence. It then presents the concepts, methods, algorithms and tools of TinyML. Practical applications of the use of TinyML are given from health and industrial fields which provide practical guidance on the design of applications and the selection of appropriate technologies. TinyML for Edge Intelligence in IoT and LPWAN Networks is highly suitable for academic researchers and professional system engineers, architects, designers, testers, deployment engineers seeking to design ultra-lower power and time-critical applications. It would also help in designing the networks for emerging and future applications for resource-constrained nodes. - This book provides one-stop solutions for emerging TinyML for IoT and LPWAN applications. - The principles and methods of TinyML are explained, with a focus on how it can be used for IoT, LPWANs, and 5G applications. - Applications from the healthcare and industrial sectors are presented. - Guidance on the design of applications and the selection of appropriate technologies is provided.
Big Data and Edge Intelligence for Enhanced Cyber Defense
Title | Big Data and Edge Intelligence for Enhanced Cyber Defense PDF eBook |
Author | Chhabi Rani Panigrahi |
Publisher | CRC Press |
Pages | 200 |
Release | 2024-07-31 |
Genre | Computers |
ISBN | 1040048366 |
An unfortunate outcome of the growth of the Internet and mobile technologies has been the challenge of countering cybercrime. This book introduces and explains the latest trends and techniques of edge artificial intelligence (EdgeAI) intended to help cyber security experts design robust cyber defense systems (CDS), including host-based and network-based intrusion detection system and digital forensic intelligence. This book discusses the direct confluence of EdgeAI with big data, as well as demonstrating detailed reviews of recent cyber threats and their countermeasure. It provides computational intelligence techniques and automated reasoning models capable of fast training and timely data processing of cyber security big data, in addition to other basic information related to network security. In addition, it provides a brief overview of modern cyber security threats and outlines the advantages of using EdgeAI to counter these threats, as well as exploring various cyber defense mechanisms (CDM) based on detection type and approaches. Specific challenging areas pertaining to cyber defense through EdgeAI, such as improving digital forensic intelligence, proactive and adaptive defense of network infrastructure, and bio-inspired CDM, are also discussed. This book is intended as a reference for academics and students in the field of network and cybersecurity, particularly on the topics of intrusion detection systems, smart grid, EdgeAI, and bio-inspired cyber defense principles. The front-line EdgeAI techniques discussed will also be of use to cybersecurity engineers in their work enhancing cyber defense systems.