Econometric Forecasting and High-frequency Data Analysis
Title | Econometric Forecasting and High-frequency Data Analysis PDF eBook |
Author | Roberto S. Mariano |
Publisher | World Scientific |
Pages | 200 |
Release | 2008 |
Genre | Business & Economics |
ISBN | 9812778969 |
This important book consists of surveys of high-frequency financial data analysis and econometric forecasting, written by pioneers in these areas including Nobel laureate Lawrence Klein. Some of the chapters were presented as tutorials to an audience in the Econometric Forecasting and High-Frequency Data Analysis Workshop at the Institute for Mathematical Science, National University of Singapore in May 2006. They will be of interest to researchers working in macroeconometrics as well as financial econometrics. Moreover, readers will find these chapters useful as a guide to the literature as well as suggestions for future research. Sample Chapter(s). Foreword (32 KB). Chapter 1: Forecast Uncertainty, Its Representation and Evaluation* (97 KB). Contents: Forecasting Uncertainty, Its Representation and Evaluation (K F Wallis); The University of Pennsylvania Models for High-Frequency Macroeconomic Modeling (L R Klein & S Ozmucur); Forecasting Seasonal Time Series (P H Franses); Car and Affine Processes (C Gourieroux); Multivariate Time Series Analysis and Forecasting (M Deistler). Readership: Professionals and researchers in econometric forecasting and financial data analysis.
High-Frequency Financial Econometrics
Title | High-Frequency Financial Econometrics PDF eBook |
Author | Yacine Aït-Sahalia |
Publisher | Princeton University Press |
Pages | 683 |
Release | 2014-07-21 |
Genre | Business & Economics |
ISBN | 0691161437 |
A comprehensive introduction to the statistical and econometric methods for analyzing high-frequency financial data High-frequency trading is an algorithm-based computerized trading practice that allows firms to trade stocks in milliseconds. Over the last fifteen years, the use of statistical and econometric methods for analyzing high-frequency financial data has grown exponentially. This growth has been driven by the increasing availability of such data, the technological advancements that make high-frequency trading strategies possible, and the need of practitioners to analyze these data. This comprehensive book introduces readers to these emerging methods and tools of analysis. Yacine Aït-Sahalia and Jean Jacod cover the mathematical foundations of stochastic processes, describe the primary characteristics of high-frequency financial data, and present the asymptotic concepts that their analysis relies on. Aït-Sahalia and Jacod also deal with estimation of the volatility portion of the model, including methods that are robust to market microstructure noise, and address estimation and testing questions involving the jump part of the model. As they demonstrate, the practical importance and relevance of jumps in financial data are universally recognized, but only recently have econometric methods become available to rigorously analyze jump processes. Aït-Sahalia and Jacod approach high-frequency econometrics with a distinct focus on the financial side of matters while maintaining technical rigor, which makes this book invaluable to researchers and practitioners alike.
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
Title | Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications PDF eBook |
Author | Eduardo Bayro-Corrochano |
Publisher | Springer |
Pages | 1071 |
Release | 2014-10-23 |
Genre | Computers |
ISBN | 3319125680 |
This book constitutes the refereed proceedings of the 19th Iberoamerican Congress on Pattern Recognition, CIARP 2014, held in Puerto Vallarta, Jalisco, Mexico, in November 2014. The 115 papers presented were carefully reviewed and selected from 160 submissions. The papers are organized in topical sections on image coding, processing and analysis; segmentation, analysis of shape and texture; analysis of signal, speech and language; document processing and recognition; feature extraction, clustering and classification; pattern recognition and machine learning; neural networks for pattern recognition; computer vision and robot vision; video segmentation and tracking.
The Oxford Handbook of Economic Forecasting
Title | The Oxford Handbook of Economic Forecasting PDF eBook |
Author | Michael P. Clements |
Publisher | OUP USA |
Pages | 732 |
Release | 2011-07-08 |
Genre | Business & Economics |
ISBN | 0195398645 |
Greater data availability has been coupled with developments in statistical theory and economic theory to allow more elaborate and complicated models to be entertained. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models.
Recent Advances in Theory and Methods for the Analysis of High Dimensional and High Frequency Financial Data
Title | Recent Advances in Theory and Methods for the Analysis of High Dimensional and High Frequency Financial Data PDF eBook |
Author | Norman R. Swanson |
Publisher | MDPI |
Pages | 196 |
Release | 2021-08-31 |
Genre | Business & Economics |
ISBN | 303650852X |
Recently, considerable attention has been placed on the development and application of tools useful for the analysis of the high-dimensional and/or high-frequency datasets that now dominate the landscape. The purpose of this Special Issue is to collect both methodological and empirical papers that develop and utilize state-of-the-art econometric techniques for the analysis of such data.
Handbook of Financial Time Series
Title | Handbook of Financial Time Series PDF eBook |
Author | Torben Gustav Andersen |
Publisher | Springer Science & Business Media |
Pages | 1045 |
Release | 2009-04-21 |
Genre | Business & Economics |
ISBN | 3540712976 |
The Handbook of Financial Time Series gives an up-to-date overview of the field and covers all relevant topics both from a statistical and an econometrical point of view. There are many fine contributions, and a preamble by Nobel Prize winner Robert F. Engle.
Macroeconomic Forecasting in the Era of Big Data
Title | Macroeconomic Forecasting in the Era of Big Data PDF eBook |
Author | Peter Fuleky |
Publisher | Springer Nature |
Pages | 716 |
Release | 2019-11-28 |
Genre | Business & Economics |
ISBN | 3030311503 |
This book surveys big data tools used in macroeconomic forecasting and addresses related econometric issues, including how to capture dynamic relationships among variables; how to select parsimonious models; how to deal with model uncertainty, instability, non-stationarity, and mixed frequency data; and how to evaluate forecasts, among others. Each chapter is self-contained with references, and provides solid background information, while also reviewing the latest advances in the field. Accordingly, the book offers a valuable resource for researchers, professional forecasters, and students of quantitative economics.