Dynamics and Bifurcations
Title | Dynamics and Bifurcations PDF eBook |
Author | Jack K. Hale |
Publisher | Springer Science & Business Media |
Pages | 577 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461244269 |
In recent years, due primarily to the proliferation of computers, dynamical systems has again returned to its roots in applications. It is the aim of this book to provide undergraduate and beginning graduate students in mathematics or science and engineering with a modest foundation of knowledge. Equations in dimensions one and two constitute the majority of the text, and in particular it is demonstrated that the basic notion of stability and bifurcations of vector fields are easily explained for scalar autonomous equations. Further, the authors investigate the dynamics of planar autonomous equations where new dynamical behavior, such as periodic and homoclinic orbits appears.
Dynamics and Bifurcations of Non-Smooth Mechanical Systems
Title | Dynamics and Bifurcations of Non-Smooth Mechanical Systems PDF eBook |
Author | Remco I. Leine |
Publisher | Springer Science & Business Media |
Pages | 245 |
Release | 2013-03-19 |
Genre | Mathematics |
ISBN | 3540443983 |
This monograph combines the knowledge of both the field of nonlinear dynamics and non-smooth mechanics, presenting a framework for a class of non-smooth mechanical systems using techniques from both fields. The book reviews recent developments, and opens the field to the nonlinear dynamics community. This book addresses researchers and graduate students in engineering and mathematics interested in the modelling, simulation and dynamics of non-smooth systems and nonlinear dynamics.
Elements of Differentiable Dynamics and Bifurcation Theory
Title | Elements of Differentiable Dynamics and Bifurcation Theory PDF eBook |
Author | David Ruelle |
Publisher | Elsevier |
Pages | 196 |
Release | 2014-05-10 |
Genre | Mathematics |
ISBN | 1483272184 |
Elements of Differentiable Dynamics and Bifurcation Theory provides an introduction to differentiable dynamics, with emphasis on bifurcation theory and hyperbolicity that is essential for the understanding of complicated time evolutions occurring in nature. This book discusses the differentiable dynamics, vector fields, fixed points and periodic orbits, and stable and unstable manifolds. The bifurcations of fixed points of a map and periodic orbits, case of semiflows, and saddle-node and Hopf bifurcation are also elaborated. This text likewise covers the persistence of normally hyperbolic manifolds, hyperbolic sets, homoclinic and heteroclinic intersections, and global bifurcations. This publication is suitable for mathematicians and mathematically inclined students of the natural sciences.
Dynamical Systems, Bifurcation Analysis and Applications
Title | Dynamical Systems, Bifurcation Analysis and Applications PDF eBook |
Author | Mohd Hafiz Mohd |
Publisher | Springer Nature |
Pages | 239 |
Release | 2019-10-11 |
Genre | Mathematics |
ISBN | 9813298324 |
This book is the result of ​Southeast Asian Mathematical Society (SEAMS) School 2018 on Dynamical Systems and Bifurcation Analysis (DySBA). It addresses the latest developments in the field of dynamical systems, and highlights the importance of numerical continuation studies in tracking both stable and unstable steady states and bifurcation points to gain better understanding of the dynamics of the systems. The SEAMS School 2018 on DySBA was held in Penang from 6th to 13th August at the School of Mathematical Sciences, Universiti Sains Malaysia.The SEAMS Schools are part of series of intensive study programs that aim to provide opportunities for an advanced learning experience in mathematics via planned lectures, contributed talks, and hands-on workshop. This book will appeal to those postgraduates, lecturers and researchers working in the field of dynamical systems and their applications. Senior undergraduates in Mathematics will also find it useful.
Elements of Applied Bifurcation Theory
Title | Elements of Applied Bifurcation Theory PDF eBook |
Author | Yuri Kuznetsov |
Publisher | Springer Science & Business Media |
Pages | 648 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 1475739788 |
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
Title | Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields PDF eBook |
Author | John Guckenheimer |
Publisher | Springer Science & Business Media |
Pages | 475 |
Release | 2013-11-21 |
Genre | Mathematics |
ISBN | 1461211409 |
An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.
Numerical Methods for Bifurcations of Dynamical Equilibria
Title | Numerical Methods for Bifurcations of Dynamical Equilibria PDF eBook |
Author | Willy J. F. Govaerts |
Publisher | SIAM |
Pages | 384 |
Release | 2000-01-01 |
Genre | Mathematics |
ISBN | 9780898719543 |
Dynamical systems arise in all fields of applied mathematics. The author focuses on the description of numerical methods for the detection, computation, and continuation of equilibria and bifurcation points of equilibria of dynamical systems. This subfield has the particular attraction of having links with the geometric theory of differential equations, numerical analysis, and linear algebra.