Dynamical Systems of Algebraic Origin
Title | Dynamical Systems of Algebraic Origin PDF eBook |
Author | Klaus Schmidt |
Publisher | Springer Science & Business Media |
Pages | 323 |
Release | 2012-01-05 |
Genre | Mathematics |
ISBN | 3034802765 |
Although much of classical ergodic theory is concerned with single transformations and one-parameter flows, the subject inherits from statistical mechanics not only its name, but also an obligation to analyze spatially extended systems with multidimensional symmetry groups. However, the wealth of concrete and natural examples which has contributed so much to the appeal and development of classical dynamics, is noticeably absent in this more general theory. The purpose of this book is to help remedy this scarcity of explicit examples by introducing a class of continuous Zd-actions diverse enough to exhibit many of the new phenomena encountered in the transition from Z to Zd, but which nevertheless lends itself to systematic study: the Zd-actions by automorphisms of compact, abelian groups. One aspect of these actions, not surprising in itself but quite striking in its extent and depth nonetheless, is the connection with commutative algebra and arithmetical algebraic geometry. The algebraic framework resulting from this connection allows the construction of examples with a variety of specified dynamical properties, and by combining algebraic and dynamical tools one obtains a quite detailed understanding of this class of Zd-actions.
Normal Forms and Unfoldings for Local Dynamical Systems
Title | Normal Forms and Unfoldings for Local Dynamical Systems PDF eBook |
Author | James Murdock |
Publisher | Springer Science & Business Media |
Pages | 508 |
Release | 2006-04-10 |
Genre | Mathematics |
ISBN | 0387217851 |
This is the most thorough treatment of normal forms currently existing in book form. There is a substantial gap between elementary treatments in textbooks and advanced research papers on normal forms. This book develops all the necessary theory 'from scratch' in just the form that is needed for the application to normal forms, with as little unnecessary terminology as possible.
Dynamical Systems, Ergodic Theory and Applications
Title | Dynamical Systems, Ergodic Theory and Applications PDF eBook |
Author | L.A. Bunimovich |
Publisher | Springer Science & Business Media |
Pages | 476 |
Release | 2000-04-05 |
Genre | Mathematics |
ISBN | 9783540663164 |
This EMS volume, the first edition of which was published as Dynamical Systems II, EMS 2, familiarizes the reader with the fundamental ideas and results of modern ergodic theory and its applications to dynamical systems and statistical mechanics. The enlarged and revised second edition adds two new contributions on ergodic theory of flows on homogeneous manifolds and on methods of algebraic geometry in the theory of interval exchange transformations.
An Introduction to Symbolic Dynamics and Coding
Title | An Introduction to Symbolic Dynamics and Coding PDF eBook |
Author | Douglas Lind |
Publisher | Cambridge University Press |
Pages | 571 |
Release | 2021-01-21 |
Genre | Language Arts & Disciplines |
ISBN | 110882028X |
Elementary introduction to symbolic dynamics, updated to describe the main advances in the subject since the original publication in 1995.
Symbolic Dynamics
Title | Symbolic Dynamics PDF eBook |
Author | Bruce P. Kitchens |
Publisher | Springer Science & Business Media |
Pages | 263 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3642588220 |
Nearly one hundred years ago Jacques Hadamard used infinite sequences of symbols to analyze the distribution of geodesics on certain surfaces. That was the beginning of symbolic dynamics. In the 1930's and 40's Arnold Hedlund and Marston Morse again used infinite sequences to investigate geodesics on surfaces of negative curvature. They coined the term symbolic dynamics and began to study sequence spaces with the shift transformation as dynamical systems. In the 1940's Claude Shannon used sequence spaces to describe infor mation channels. Since that time symbolic dynamics has been used in ergodic theory, topological dynamics, hyperbolic dynamics, information theory and complex dynamics. Symbolic dynamical systems with a finite memory are stud ied in this book. They are the topological Markov shifts. Each can be defined by transition rules and the rules can be summarized by a transition matrix. The study naturally divides into two parts. The first part is about topological Markov shifts where the alphabet is finite. The second part is concerned with topological Markov shifts whose alphabet is count ably infinite. The techniques used in the two cases are quite different. When the alphabet is finite most of the methods are combinatorial or algebraic. When the alphabet is infinite the methods are much more analytic. This book grew from notes for a graduate course taught at Wesleyan Uni versity in the fall of 1994 and is intended as a graduate text and as a reference book for mathematicians working in related fields.
European Congress of Mathematics
Title | European Congress of Mathematics PDF eBook |
Author | Antal Balog |
Publisher | Birkhäuser |
Pages | 412 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3034888988 |
This is the second volume of the procedings of the second European Congress of Mathematics. Volume I presents the speeches delivered at the Congress, the list of lectures, and short summaries of the achievements of the prize winners. Together with volume II it contains a collection of contributions by the invited lecturers. Finally, volume II also presents reports on some of the Round Table discussions. This two-volume set thus gives an overview of the state of the art in many fields of mathematics and is therefore of interest to every professional mathematician. Contributors: Vol. I: N. Alon, L. Ambrosio, K. Astala, R. Benedetti, Ch. Bessenrodt, F. Bethuel, P. Bjørstad, E. Bolthausen, J. Bricmont, A. Kupiainen, D. Burago, L. Caporaso, U. Dierkes, I. Dynnikov, L.H. Eliasson, W.T. Gowers, H. Hedenmalm, A. Huber, J. Kaczorowski, J. Kollár, D.O. Kramkov, A.N. Shiryaev, C. Lescop, R. März. Vol. II: J. Matousek, D. McDuff, A.S. Merkurjev, V. Milman, St. Müller, T. Nowicki, E. Olivieri, E. Scoppola, V.P. Platonov, J. Pöschel, L. Polterovich , L. Pyber, N. Simányi, J.P. Solovej, A. Stipsicz, G. Tardos, J.-P. Tignol, A.P. Veselov, E. Zuazua.
Ergodic Theory
Title | Ergodic Theory PDF eBook |
Author | I. P. Cornfeld |
Publisher | Springer Science & Business Media |
Pages | 487 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461569273 |
Ergodic theory is one of the few branches of mathematics which has changed radically during the last two decades. Before this period, with a small number of exceptions, ergodic theory dealt primarily with averaging problems and general qualitative questions, while now it is a powerful amalgam of methods used for the analysis of statistical properties of dyna mical systems. For this reason, the problems of ergodic theory now interest not only the mathematician, but also the research worker in physics, biology, chemistry, etc. The outline of this book became clear to us nearly ten years ago but, for various reasons, its writing demanded a long period of time. The main principle, which we adhered to from the beginning, was to develop the approaches and methods or ergodic theory in the study of numerous concrete examples. Because of this, Part I of the book contains the description of various classes of dynamical systems, and their elementary analysis on the basis of the fundamental notions of ergodicity, mixing, and spectra of dynamical systems. Here, as in many other cases, the adjective" elementary" i~ not synonymous with "simple. " Part II is devoted to "abstract ergodic theory. " It includes the construc tion of direct and skew products of dynamical systems, the Rohlin-Halmos lemma, and the theory of special representations of dynamical systems with continuous time. A considerable part deals with entropy.