Dynamical Systems and Small Divisors

Dynamical Systems and Small Divisors
Title Dynamical Systems and Small Divisors PDF eBook
Author Hakan Eliasson
Publisher Springer
Pages 207
Release 2004-10-11
Genre Mathematics
ISBN 3540479287

Download Dynamical Systems and Small Divisors Book in PDF, Epub and Kindle

Many problems of stability in the theory of dynamical systems face the difficulty of small divisors. The most famous example is probably given by Kolmogorov-Arnold-Moser theory in the context of Hamiltonian systems, with many applications to physics and astronomy. Other natural small divisor problems arise considering circle diffeomorphisms or quasiperiodic Schroedinger operators. In this volume Hakan Eliasson, Sergei Kuksin and Jean-Christophe Yoccoz illustrate the most recent developments of this theory both in finite and infinite dimension. A list of open problems (including some problems contributed by John Mather and Michel Herman) has been included.

Number Theory and Dynamical Systems

Number Theory and Dynamical Systems
Title Number Theory and Dynamical Systems PDF eBook
Author M. M. Dodson
Publisher Cambridge University Press
Pages 185
Release 1989-11-09
Genre Mathematics
ISBN 0521369193

Download Number Theory and Dynamical Systems Book in PDF, Epub and Kindle

This volume contains selected contributions from a very successful meeting on Number Theory and Dynamical Systems held at the University of York in 1987. There are close and surprising connections between number theory and dynamical systems. One emerged last century from the study of the stability of the solar system where problems of small divisors associated with the near resonance of planetary frequencies arose. Previously the question of the stability of the solar system was answered in more general terms by the celebrated KAM theorem, in which the relationship between near resonance (and so Diophantine approximation) and stability is of central importance. Other examples of the connections involve the work of Szemeredi and Furstenberg, and Sprindzuk. As well as containing results on the relationship between number theory and dynamical systems, the book also includes some more speculative and exploratory work which should stimulate interest in different approaches to old problems.

From Number Theory to Physics

From Number Theory to Physics
Title From Number Theory to Physics PDF eBook
Author Michel Waldschmidt
Publisher Springer Science & Business Media
Pages 702
Release 2013-03-09
Genre Science
ISBN 3662028387

Download From Number Theory to Physics Book in PDF, Epub and Kindle

The present book contains fourteen expository contributions on various topics connected to Number Theory, or Arithmetics, and its relationships to Theoreti cal Physics. The first part is mathematically oriented; it deals mostly with ellip tic curves, modular forms, zeta functions, Galois theory, Riemann surfaces, and p-adic analysis. The second part reports on matters with more direct physical interest, such as periodic and quasiperiodic lattices, or classical and quantum dynamical systems. The contribution of each author represents a short self-contained course on a specific subject. With very few prerequisites, the reader is offered a didactic exposition, which follows the author's original viewpoints, and often incorpo rates the most recent developments. As we shall explain below, there are strong relationships between the different chapters, even though every single contri bution can be read independently of the others. This volume originates in a meeting entitled Number Theory and Physics, which took place at the Centre de Physique, Les Houches (Haute-Savoie, France), on March 7 - 16, 1989. The aim of this interdisciplinary meeting was to gather physicists and mathematicians, and to give to members of both com munities the opportunity of exchanging ideas, and to benefit from each other's specific knowledge, in the area of Number Theory, and of its applications to the physical sciences. Physicists have been given, mostly through the program of lectures, an exposition of some of the basic methods and results of Num ber Theory which are the most actively used in their branch.

Mathematics of Complexity and Dynamical Systems

Mathematics of Complexity and Dynamical Systems
Title Mathematics of Complexity and Dynamical Systems PDF eBook
Author Robert A. Meyers
Publisher Springer Science & Business Media
Pages 1885
Release 2011-10-05
Genre Mathematics
ISBN 1461418054

Download Mathematics of Complexity and Dynamical Systems Book in PDF, Epub and Kindle

Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.

Handbook of Dynamical Systems

Handbook of Dynamical Systems
Title Handbook of Dynamical Systems PDF eBook
Author H. Broer
Publisher Elsevier
Pages 556
Release 2010-11-10
Genre Mathematics
ISBN 0080932266

Download Handbook of Dynamical Systems Book in PDF, Epub and Kindle

In this volume, the authors present a collection of surveys on various aspects of the theory of bifurcations of differentiable dynamical systems and related topics. By selecting these subjects, they focus on those developments from which research will be active in the coming years. The surveys are intended to educate the reader on the recent literature on the following subjects: transversality and generic properties like the various forms of the so-called Kupka-Smale theorem, the Closing Lemma and generic local bifurcations of functions (so-called catastrophe theory) and generic local bifurcations in 1-parameter families of dynamical systems, and notions of structural stability and moduli. - Covers recent literature on various topics related to the theory of bifurcations of differentiable dynamical systems - Highlights developments that are the foundation for future research in this field - Provides material in the form of surveys, which are important tools for introducing the bifurcations of differentiable dynamical systems

Dynamical Systems and Chaos

Dynamical Systems and Chaos
Title Dynamical Systems and Chaos PDF eBook
Author Henk Broer
Publisher Springer Science & Business Media
Pages 313
Release 2010-10-20
Genre Mathematics
ISBN 1441968709

Download Dynamical Systems and Chaos Book in PDF, Epub and Kindle

Over the last four decades there has been extensive development in the theory of dynamical systems. This book aims at a wide audience where the first four chapters have been used for an undergraduate course in Dynamical Systems. Material from the last two chapters and from the appendices has been used quite a lot for master and PhD courses. All chapters are concluded by an exercise section. The book is also directed towards researchers, where one of the challenges is to help applied researchers acquire background for a better understanding of the data that computer simulation or experiment may provide them with the development of the theory.

Stable and Random Motions in Dynamical Systems

Stable and Random Motions in Dynamical Systems
Title Stable and Random Motions in Dynamical Systems PDF eBook
Author Jurgen Moser
Publisher Princeton University Press
Pages 216
Release 2016-03-02
Genre Science
ISBN 1400882699

Download Stable and Random Motions in Dynamical Systems Book in PDF, Epub and Kindle

For centuries, astronomers have been interested in the motions of the planets and in methods to calculate their orbits. Since Newton, mathematicians have been fascinated by the related N-body problem. They seek to find solutions to the equations of motion for N masspoints interacting with an inverse-square-law force and to determine whether there are quasi-periodic orbits or not. Attempts to answer such questions have led to the techniques of nonlinear dynamics and chaos theory. In this book, a classic work of modern applied mathematics, Jürgen Moser presents a succinct account of two pillars of the theory: stable and chaotic behavior. He discusses cases in which N-body motions are stable, covering topics such as Hamiltonian systems, the (Moser) twist theorem, and aspects of Kolmogorov-Arnold-Moser theory. He then explores chaotic orbits, exemplified in a restricted three-body problem, and describes the existence and importance of homoclinic points. This book is indispensable for mathematicians, physicists, and astronomers interested in the dynamics of few- and many-body systems and in fundamental ideas and methods for their analysis. After thirty years, Moser's lectures are still one of the best entrées to the fascinating worlds of order and chaos in dynamics.