Dynamical Systems and Semisimple Groups

Dynamical Systems and Semisimple Groups
Title Dynamical Systems and Semisimple Groups PDF eBook
Author Renato Feres
Publisher Cambridge University Press
Pages 268
Release 1998-06-13
Genre Mathematics
ISBN 9780521591621

Download Dynamical Systems and Semisimple Groups Book in PDF, Epub and Kindle

The theory of dynamical systems can be described as the study of the global properties of groups of transformations. The historical roots of the subject lie in celestial and statistical mechanics, for which the group is the time parameter. The more general modern theory treats the dynamical properties of the semisimple Lie groups. Some of the most fundamental discoveries in this area are due to the work of G.A. Margulis and R. Zimmer. This book comprises a systematic, self-contained introduction to the Margulis-Zimmer theory, and provides an entry into current research. Assuming only a basic knowledge of manifolds, algebra, and measure theory, this book should appeal to anyone interested in Lie theory, differential geometry and dynamical systems.

Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems

Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems
Title Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems PDF eBook
Author Andrei N. Leznov
Publisher Birkhäuser
Pages 308
Release 2012-12-06
Genre Mathematics
ISBN 3034886381

Download Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems Book in PDF, Epub and Kindle

The book reviews a large number of 1- and 2-dimensional equations that describe nonlinear phenomena in various areas of modern theoretical and mathematical physics. It is meant, above all, for physicists who specialize in the field theory and physics of elementary particles and plasma, for mathe maticians dealing with nonlinear differential equations, differential geometry, and algebra, and the theory of Lie algebras and groups and their representa tions, and for students and post-graduates in these fields. We hope that the book will be useful also for experts in hydrodynamics, solid-state physics, nonlinear optics electrophysics, biophysics and physics of the Earth. The first two chapters of the book present some results from the repre sentation theory of Lie groups and Lie algebras and their counterpart on supermanifolds in a form convenient in what follows. They are addressed to those who are interested in integrable systems but have a scanty vocabulary in the language of representation theory. The experts may refer to the first two chapters only occasionally. As we wanted to give the reader an opportunity not only to come to grips with the problem on the ideological level but also to integrate her or his own concrete nonlinear equations without reference to the literature, we had to expose in a self-contained way the appropriate parts of the representation theory from a particular point of view.

Handbook of Dynamical Systems

Handbook of Dynamical Systems
Title Handbook of Dynamical Systems PDF eBook
Author B. Hasselblatt
Publisher Elsevier
Pages 1231
Release 2002-08-20
Genre Mathematics
ISBN 0080533442

Download Handbook of Dynamical Systems Book in PDF, Epub and Kindle

Volumes 1A and 1B.These volumes give a comprehensive survey of dynamics written by specialists in the various subfields of dynamical systems. The presentation attains coherence through a major introductory survey by the editors that organizes the entire subject, and by ample cross-references between individual surveys.The volumes are a valuable resource for dynamicists seeking to acquaint themselves with other specialties in the field, and to mathematicians active in other branches of mathematics who wish to learn about contemporary ideas and results dynamics. Assuming only general mathematical knowledge the surveys lead the reader towards the current state of research in dynamics.Volume 1B will appear 2005.

Discrete Subgroups of Semisimple Lie Groups

Discrete Subgroups of Semisimple Lie Groups
Title Discrete Subgroups of Semisimple Lie Groups PDF eBook
Author Gregori A. Margulis
Publisher Springer Science & Business Media
Pages 408
Release 1991-02-15
Genre Mathematics
ISBN 9783540121794

Download Discrete Subgroups of Semisimple Lie Groups Book in PDF, Epub and Kindle

Discrete subgroups have played a central role throughout the development of numerous mathematical disciplines. Discontinuous group actions and the study of fundamental regions are of utmost importance to modern geometry. Flows and dynamical systems on homogeneous spaces have found a wide range of applications, and of course number theory without discrete groups is unthinkable. This book, written by a master of the subject, is primarily devoted to discrete subgroups of finite covolume in semi-simple Lie groups. Since the notion of "Lie group" is sufficiently general, the author not only proves results in the classical geometry setting, but also obtains theorems of an algebraic nature, e.g. classification results on abstract homomorphisms of semi-simple algebraic groups over global fields. The treatise of course contains a presentation of the author's fundamental rigidity and arithmeticity theorems. The work in this monograph requires the language and basic results from fields such as algebraic groups, ergodic theory, the theory of unitary representatons, and the theory of amenable groups. The author develops the necessary material from these subjects; so that, while the book is of obvious importance for researchers working in related areas, it is essentially self-contained and therefore is also of great interest for advanced students.

Dynamical Systems of Algebraic Origin

Dynamical Systems of Algebraic Origin
Title Dynamical Systems of Algebraic Origin PDF eBook
Author Klaus Schmidt
Publisher Springer Science & Business Media
Pages 323
Release 2012-01-05
Genre Mathematics
ISBN 3034802765

Download Dynamical Systems of Algebraic Origin Book in PDF, Epub and Kindle

Although much of classical ergodic theory is concerned with single transformations and one-parameter flows, the subject inherits from statistical mechanics not only its name, but also an obligation to analyze spatially extended systems with multidimensional symmetry groups. However, the wealth of concrete and natural examples which has contributed so much to the appeal and development of classical dynamics, is noticeably absent in this more general theory. The purpose of this book is to help remedy this scarcity of explicit examples by introducing​ a class of continuous Zd-actions diverse enough to exhibit many of the new phenomena encountered in the transition from Z to Zd, but which nevertheless lends itself to systematic study: the Zd-actions by automorphisms of compact, abelian groups. One aspect of these actions, not surprising in itself but quite striking in its extent and depth nonetheless, is the connection with commutative algebra and arithmetical algebraic geometry. The algebraic framework resulting from this connection allows the construction of examples with a variety of specified dynamical properties, and by combining algebraic and dynamical tools one obtains a quite detailed understanding of this class of Zd-actions.

Group Actions in Ergodic Theory, Geometry, and Topology

Group Actions in Ergodic Theory, Geometry, and Topology
Title Group Actions in Ergodic Theory, Geometry, and Topology PDF eBook
Author Robert J. Zimmer
Publisher University of Chicago Press
Pages 724
Release 2019-12-23
Genre Mathematics
ISBN 022656827X

Download Group Actions in Ergodic Theory, Geometry, and Topology Book in PDF, Epub and Kindle

Robert J. Zimmer is best known in mathematics for the highly influential conjectures and program that bear his name. Group Actions in Ergodic Theory, Geometry, and Topology: Selected Papers brings together some of the most significant writings by Zimmer, which lay out his program and contextualize his work over the course of his career. Zimmer’s body of work is remarkable in that it involves methods from a variety of mathematical disciplines, such as Lie theory, differential geometry, ergodic theory and dynamical systems, arithmetic groups, and topology, and at the same time offers a unifying perspective. After arriving at the University of Chicago in 1977, Zimmer extended his earlier research on ergodic group actions to prove his cocycle superrigidity theorem which proved to be a pivotal point in articulating and developing his program. Zimmer’s ideas opened the door to many others, and they continue to be actively employed in many domains related to group actions in ergodic theory, geometry, and topology. In addition to the selected papers themselves, this volume opens with a foreword by David Fisher, Alexander Lubotzky, and Gregory Margulis, as well as a substantial introductory essay by Zimmer recounting the course of his career in mathematics. The volume closes with an afterword by Fisher on the most recent developments around the Zimmer program.

Ergodic Theory

Ergodic Theory
Title Ergodic Theory PDF eBook
Author Manfred Einsiedler
Publisher Springer Science & Business Media
Pages 486
Release 2010-09-11
Genre Mathematics
ISBN 0857290215

Download Ergodic Theory Book in PDF, Epub and Kindle

This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. Ergodic Theory with a view towards Number Theory will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory.