DSP for MATLABTM and LabVIEWTM IV
Title | DSP for MATLABTM and LabVIEWTM IV PDF eBook |
Author | Forester Isen |
Publisher | Springer Nature |
Pages | 109 |
Release | 2022-05-31 |
Genre | Technology & Engineering |
ISBN | 3031025318 |
This book is Volume IV of the series DSP for MATLABTM and LabVIEWTM. Volume IV is an introductory treatment of LMS Adaptive Filtering and applications, and covers cost functions, performance surfaces, coefficient perturbation to estimate the gradient, the LMS algorithm, response of the LMS algorithm to narrow-band signals, and various topologies such as ANC (Active Noise Cancelling) or system modeling, Noise Cancellation, Interference Cancellation, Echo Cancellation (with single- and dual-H topologies), and Inverse Filtering/Deconvolution. The entire series consists of four volumes that collectively cover basic digital signal processing in a practical and accessible manner, but which nonetheless include all essential foundation mathematics. As the series title implies, the scripts here will run on both MATLABTM and LabVIEWTM. The text for all volumes contains many examples, and many useful computational scripts, augmented by demonstration scripts and LabVIEWTM Virtual Instruments (VIs) that can be run to illustrate various signal processing concepts graphically on the user's computer screen. Volume I consists of four chapters that collectively set forth a brief overview of the field of digital signal processing, useful signals and concepts (including convolution, recursion, difference equations, LTI systems, etc), conversion from the continuous to discrete domain and back (i.e., analog-to-digital and digital-to-analog conversion), aliasing, the Nyquist rate, normalized frequency, sample rate conversion and Mu-law compression, and signal processing principles including correlation, the correlation sequence, the Real DFT, correlation by convolution, matched filtering, simple FIR filters, and simple IIR filters. Chapter 4 of Volume I, in particular, provides an intuitive or "first principle" understanding of how digital filtering and frequency transforms work. Volume II provides detailed coverage of discrete frequency transforms, including a brief overview of common frequency transforms, both discrete and continuous, followed by detailed treatments of the Discrete Time Fourier Transform (DTFT), the z-Transform (including definition and properties, the inverse z-transform, frequency response via z-transform, and alternate filter realization topologies including Direct Form, Direct Form Transposed, Cascade Form, Parallel Form, and Lattice Form), and the Discrete Fourier Transform (DFT) (including Discrete Fourier Series, the DFT-IDFT pair, DFT of common signals, bin width, sampling duration, and sample rate, the FFT, the Goertzel Algorithm, Linear, Periodic, and Circular convolution, DFT Leakage, and computation of the Inverse DFT). Volume III covers digital filter design, including the specific topics of FIR design via windowed-ideal-lowpass filter, FIR highpass, bandpass, and bandstop filter design from windowed-ideal lowpass filters, FIR design using the transition-band-optimized Frequency Sampling technique (implemented by Inverse-DFT or Cosine/Sine Summation Formulas), design of equiripple FIRs of all standard types including Hilbert Transformers and Differentiators via the Remez Exchange Algorithm, design of Butterworth, Chebyshev (Types I and II), and Elliptic analog prototype lowpass filters, conversion of analog lowpass prototype filters to highpass, bandpass, and bandstop filters, and conversion of analog filters to digital filters using the Impulse Invariance and Bilinear Transform techniques. Certain filter topologies specific to FIRs are also discussed, as are two simple FIR types, the Comb and Moving Average filters. Table of Contents: Introduction To LMS Adaptive Filtering / Applied Adaptive Filtering
DSP for MATLABTM and LabVIEWTM III
Title | DSP for MATLABTM and LabVIEWTM III PDF eBook |
Author | Forester W. Isen |
Publisher | Springer Nature |
Pages | 234 |
Release | 2022-06-01 |
Genre | Technology & Engineering |
ISBN | 303102530X |
This book is Volume III of the series DSP for MATLABTM and LabVIEWTM. Volume III covers digital filter design, including the specific topics of FIR design via windowed-ideal-lowpass filter, FIR highpass, bandpass, and bandstop filter design from windowed-ideal lowpass filters, FIR design using the transition-band-optimized Frequency Sampling technique (implemented by Inverse-DFT or Cosine/Sine Summation Formulas), design of equiripple FIRs of all standard types including Hilbert Transformers and Differentiators via the Remez Exchange Algorithm, design of Butterworth, Chebyshev (Types I and II), and Elliptic analog prototype lowpass filters, conversion of analog lowpass prototype filters to highpass, bandpass, and bandstop filters, and conversion of analog filters to digital filters using the Impulse Invariance and Bilinear Transform techniques. Certain filter topologies specific to FIRs are also discussed, as are two simple FIR types, the Comb and Moving Average filters. The entire series consists of four volumes that collectively cover basic digital signal processing in a practical and accessible manner, but which nonetheless include all essential foundation mathematics. As the series title implies, the scripts (of which there are more than 200) described in the text and supplied in code form here will run on both MATLABTM and LabVIEWTM. The text for all volumes contains many examples, and many useful computational scripts, augmented by demonstration scripts and LabVIEWTM Virtual Instruments (VIs) that can be run to illustrate various signal processing concepts graphically on the user's computer screen. Volume I consists of four chapters that collectively set forth a brief overview of the field of digital signal processing, useful signals and concepts (including convolution, recursion, difference equations, LTI systems, etc), conversion from the continuous to discrete domain and back (i.e., analog-to-digital and digital-to-analog conversion), aliasing, the Nyquist rate, normalized frequency, sample rate conversion and Mu-law compression, and signal processing principles including correlation, the correlation sequence, the Real DFT, correlation by convolution, matched filtering, simple FIR filters, and simple IIR filters. Chapter four of Volume I, in particular, provides an intuitive or ""first principle"" understanding of how digital filtering and frequency transforms work. Volume II provides detailed coverage of discrete frequency transforms, including a brief overview of common frequency transforms, both discrete and continuous, followed by detailed treatments of the Discrete Time Fourier Transform (DTFT), the z-Transform (including definition and properties, the inverse z-transform, frequency response via z-transform, and alternate filter realization topologies including Direct Form, Direct Form Transposed, Cascade Form, Parallel Form, and Lattice Form), and the Discrete Fourier Transform (DFT) (including Discrete Fourier Series, the DFT-IDFT pair, DFT of common signals, bin width, sampling duration, and sample rate, the FFT, the Goertzel Algorithm, Linear, Periodic, and Circular convolution, DFT Leakage, and computation of the Inverse DFT). Volume IV, the culmination of the series, is an introductory treatment of LMS Adaptive Filtering and applications, and covers cost functions, performance surfaces, coefficient perturbation to estimate the gradient, the LMS algorithm, response of the LMS algorithm to narrow-band signals, and various topologies such as ANC (Active Noise Cancelling) or system modeling, Periodic Signal Removal/Prediction/Adaptive Line Enhancement (ALE), Interference Cancellation, Echo Cancellation (with single- and dual-H topologies), and Inverse Filtering/Deconvolution/Equalization. Table of Contents: Principles
DSP for MATLAB and LabVIEW: Fundamentals of discrete signal processing
Title | DSP for MATLAB and LabVIEW: Fundamentals of discrete signal processing PDF eBook |
Author | Forester W. Isen |
Publisher | Morgan & Claypool Publishers |
Pages | 214 |
Release | 2008 |
Genre | Adaptive filters |
ISBN | 1598298909 |
This book is Volume I of the series DSP for MATLAB(TM) and LabVIEW(TM). The entire series consists of four volumes that collectively cover basic digital signal processing in a practical and accessible manner, but which nonetheless include all essential foundation mathematics. As the series title implies, the scripts (of which there are more than 200) described in the text and supplied in code form (available at www.morganclaypool.com/page/isen) will run on both MATLAB and LabVIEW. Volume I consists of four chapters. The first chapter gives a brief overview of the field of digital signal processing. This is followed by a chapter detailing many useful signals and concepts, including convolution, recursion, difference equations, LTI systems, etc. The third chapter covers conversion from the continuous to discrete domain and back (i.e., analog-to-digital and digital-to-analog conversion), aliasing, the Nyquist rate, normalized frequency, conversion from one sample rate to another, waveform generation at various sample rates from stored wave data, and Mu-law compression. The fourth and final chapter of the present volume introduces the reader to many important principles of signal processing, including correlation, the correlation sequence, the Real DFT, correlation by convolution, matched filtering, simple FIR filters, and simple IIR filters. Chapter 4, in particular, provides an intuitive or "first principle" understanding of how digital filtering and frequency transforms work, preparing the reader for Volumes II and III, which provide, respectively, detailed coverage of discrete frequency transforms (including the Discrete Time Fourier Transform, the Discrete Fourier Transform, and the z-Transform) and digital filter design (FIR design using Windowing, Frequency Sampling, and Optimum Equiripple techniques, and Classical IIR design). Volume IV, the culmination of the series, is an introductory treatment of LMS Adaptive Filtering and applications. The text for all volumes contains many examples, and many useful computational scripts, augmented by demonstration scripts and LabVIEW Virtual Instruments (VIs) that can be run to illustrate various signal processing concepts graphically on the user's computer screen. Table of Contents: An Overview of DSP / Discrete Signals and Concepts / Sampling and Binary Representation / Transform and Filtering Principles
Sequential Monte Carlo Methods for Nonlinear Discrete-time Filtering
Title | Sequential Monte Carlo Methods for Nonlinear Discrete-time Filtering PDF eBook |
Author | Marcelo G. S. Bruno |
Publisher | Morgan & Claypool Publishers |
Pages | 101 |
Release | 2013 |
Genre | Computers |
ISBN | 1627051198 |
In these notes, we introduce particle filtering as a recursive importance sampling method that approximates the minimum-mean-square-error (MMSE) estimate of a sequence of hidden state vectors in scenarios where the joint probability distribution of the states and the observations is non-Gaussian and, therefore, closed-form analytical expressions for the MMSE estimate are generally unavailable. We begin the notes with a review of Bayesian approaches to static (i.e., time-invariant) parameter estimation. In the sequel, we describe the solution to the problem of sequential state estimation in linear, Gaussian dynamic models, which corresponds to the well-known Kalman (or Kalman-Bucy) filter. Finally, we move to the general nonlinear, non-Gaussian stochastic filtering problem and present particle filtering as a sequential Monte Carlo approach to solve that problem in a statistically optimal way. We review several techniques to improve the performance of particle filters, including importance function optimization, particle resampling, Markov Chain Monte Carlo move steps, auxiliary particle filtering, and regularized particle filtering. We also discuss Rao-Blackwellized particle filtering as a technique that is particularly well-suited for many relevant applications such as fault detection and inertial navigation. Finally, we conclude the notes with a discussion on the emerging topic of distributed particle filtering using multiple processors located at remote nodes in a sensor network. Throughout the notes, we often assume a more general framework than in most introductory textbooks by allowing either the observation model or the hidden state dynamic model to include unknown parameters. In a fully Bayesian fashion, we treat those unknown parameters also as random variables. Using suitable dynamic conjugate priors, that approach can be applied then to perform joint state and parameter estimation.
Anywhere-Anytime Signals and Systems Laboratory
Title | Anywhere-Anytime Signals and Systems Laboratory PDF eBook |
Author | Nasser Kehtarnavaz |
Publisher | Springer Nature |
Pages | 207 |
Release | 2016-10-17 |
Genre | Technology & Engineering |
ISBN | 3031025385 |
A typical undergraduate electrical engineering curriculum incorporates a signals and systems course. The widely used approach for the laboratory component of such courses involves the utilization of MATLAB to implement signals and systems concepts. This book presents a newly developed laboratory paradigm where MATLAB codes are made to run on smartphones, which most students already possess. This smartphone-based approach enables an anywhere-anytime platform for students to conduct signals and systems experiments. This book covers the laboratory experiments that are normally covered in signals and systems courses and discusses how to run MATLAB codes for these experiments on smartphones, thus enabling a truly mobile laboratory environment for students to learn the implementation aspects of signals and systems concepts. A zipped file of the codes discussed in the book can be acquired via the website http://sites.fastspring.com/bookcodes/product/SignalsSystemsBookcodes.
DSP for MATLAB and LabVIEW: Fundamentals of discrete frequency transforms
Title | DSP for MATLAB and LabVIEW: Fundamentals of discrete frequency transforms PDF eBook |
Author | Forester W. Isen |
Publisher | Morgan & Claypool Publishers |
Pages | 216 |
Release | 2008 |
Genre | Adaptive filters |
ISBN | 1598298933 |
The entire series consists of four volumes that collectively cover basic digital signal processing in a practical and accessible manner, but which nonetheless include all essential foundation mathematics. As the series title implies, the scripts (of which there are more than 200) described in the text and supplied in code form (available via the internet at http://www.morganclaypool.com/page/isen) will run on both MATLAB and LabVIEW. The text for all volumes contains many examples, and many useful computational scripts, augmented by demonstration scripts and LabVIEW Virtual Instruments (VIs) that can be run to illustrate various signal processing concepts graphically on the user's computer screen.^
Processing of Seismic Reflection Data Using MATLAB
Title | Processing of Seismic Reflection Data Using MATLAB PDF eBook |
Author | Wail Mousa |
Publisher | Morgan & Claypool Publishers |
Pages | 99 |
Release | 2011-10-10 |
Genre | Technology & Engineering |
ISBN | 1608457931 |
This short book is for students, professors and professionals interested in signal processing of seismic data using MATLABTM. The step-by-step demo of the full reflection seismic data processing workflow using a complete real seismic data set places itself as a very useful feature of the book. This is especially true when students are performing their projects, and when professors and researchers are testing their new developed algorithms in MATLABTM for processing seismic data. The book provides the basic seismic and signal processing theory required for each chapter and shows how to process the data from raw field records to a final image of the subsurface all using MATLABTM. The MATLABTM codes and seismic data can be downloaded here. Table of Contents: Seismic Data Processing: A Quick Overview / Examination of A Real Seismic Data Set / Quality Control of Real Seismic Data / Seismic Noise Attenuation / Seismic Deconvolution / Carrying the Processing Forward / Static Corrections / Seismic Migration / Concluding Remarks