Dive Into Algorithms

Dive Into Algorithms
Title Dive Into Algorithms PDF eBook
Author Bradford Tuckfield
Publisher No Starch Press
Pages 250
Release 2021-01-05
Genre Computers
ISBN 1718500696

Download Dive Into Algorithms Book in PDF, Epub and Kindle

Dive Into Algorithms is a broad introduction to algorithms using the Python Programming Language. Dive Into Algorithms is a wide-ranging, Pythonic tour of many of the world's most interesting algorithms. With little more than a bit of computer programming experience and basic high-school math, you'll explore standard computer science algorithms for searching, sorting, and optimization; human-based algorithms that help us determine how to catch a baseball or eat the right amount at a buffet; and advanced algorithms like ones used in machine learning and artificial intelligence. You'll even explore how ancient Egyptians and Russian peasants used algorithms to multiply numbers, how the ancient Greeks used them to find greatest common divisors, and how Japanese scholars in the age of samurai designed algorithms capable of generating magic squares. You'll explore algorithms that are useful in pure mathematics and learn how mathematical ideas can improve algorithms. You'll learn about an algorithm for generating continued fractions, one for quick calculations of square roots, and another for generating seemingly random sets of numbers. You'll also learn how to: • Use algorithms to debug code, maximize revenue, schedule tasks, and create decision trees • Measure the efficiency and speed of algorithms • Generate Voronoi diagrams for use in various geometric applications • Use algorithms to build a simple chatbot, win at board games, or solve sudoku puzzles • Write code for gradient ascent and descent algorithms that can find the maxima and minima of functions • Use simulated annealing to perform global optimization • Build a decision tree to predict happiness based on a person's characteristics Once you've finished this book you'll understand how to code and implement important algorithms as well as how to measure and optimize their performance, all while learning the nitty-gritty details of today's most powerful algorithms.

Dive Into Algorithms

Dive Into Algorithms
Title Dive Into Algorithms PDF eBook
Author Bradford Tuckfield
Publisher No Starch Press
Pages 250
Release 2021-01-25
Genre Computers
ISBN 1718500688

Download Dive Into Algorithms Book in PDF, Epub and Kindle

Dive Into Algorithms is a broad introduction to algorithms using the Python Programming Language. Dive Into Algorithms is a wide-ranging, Pythonic tour of many of the world's most interesting algorithms. With little more than a bit of computer programming experience and basic high-school math, you'll explore standard computer science algorithms for searching, sorting, and optimization; human-based algorithms that help us determine how to catch a baseball or eat the right amount at a buffet; and advanced algorithms like ones used in machine learning and artificial intelligence. You'll even explore how ancient Egyptians and Russian peasants used algorithms to multiply numbers, how the ancient Greeks used them to find greatest common divisors, and how Japanese scholars in the age of samurai designed algorithms capable of generating magic squares. You'll explore algorithms that are useful in pure mathematics and learn how mathematical ideas can improve algorithms. You'll learn about an algorithm for generating continued fractions, one for quick calculations of square roots, and another for generating seemingly random sets of numbers. You'll also learn how to: Use algorithms to debug code, maximize revenue, schedule tasks, and create decision trees Measure the efficiency and speed of algorithms Generate Voronoi diagrams for use in various geometric applications Use algorithms to build a simple chatbot, win at board games, or solve sudoku puzzles Write code for gradient ascent and descent algorithms that can find the maxima and minima of functions Use simulated annealing to perform global optimization Build a decision tree to predict happiness based on a person's characteristics Once you've finished this book you'll understand how to code and implement important algorithms as well as how to measure and optimize their performance, all while learning the nitty-gritty details of today's most powerful algorithms.

Algorithms in a Nutshell

Algorithms in a Nutshell
Title Algorithms in a Nutshell PDF eBook
Author George T. Heineman
Publisher "O'Reilly Media, Inc."
Pages 366
Release 2008-10-14
Genre Computers
ISBN 1449391133

Download Algorithms in a Nutshell Book in PDF, Epub and Kindle

Creating robust software requires the use of efficient algorithms, but programmers seldom think about them until a problem occurs. Algorithms in a Nutshell describes a large number of existing algorithms for solving a variety of problems, and helps you select and implement the right algorithm for your needs -- with just enough math to let you understand and analyze algorithm performance. With its focus on application, rather than theory, this book provides efficient code solutions in several programming languages that you can easily adapt to a specific project. Each major algorithm is presented in the style of a design pattern that includes information to help you understand why and when the algorithm is appropriate. With this book, you will: Solve a particular coding problem or improve on the performance of an existing solution Quickly locate algorithms that relate to the problems you want to solve, and determine why a particular algorithm is the right one to use Get algorithmic solutions in C, C++, Java, and Ruby with implementation tips Learn the expected performance of an algorithm, and the conditions it needs to perform at its best Discover the impact that similar design decisions have on different algorithms Learn advanced data structures to improve the efficiency of algorithms With Algorithms in a Nutshell, you'll learn how to improve the performance of key algorithms essential for the success of your software applications.

ALGORITHMS OF THE INTELLIGENT WEB

ALGORITHMS OF THE INTELLIGENT WEB
Title ALGORITHMS OF THE INTELLIGENT WEB PDF eBook
Author Haralambos Marmanis
Publisher
Pages 368
Release 2011-03-01
Genre
ISBN 9789350040331

Download ALGORITHMS OF THE INTELLIGENT WEB Book in PDF, Epub and Kindle

Special Features: Learning Elements:· How to create recommendations just like those on Netflix and Amazon· How to implement Google's Pagerank algorithm· How to discover matches on social-networking sites· How to organize the discussions on your favorite news group· How to select topics of interest from shared bookmarks· How to leverage user clicks· How to categorize emails based on their content· How to build applications that do targeted advertising· How to implement fraud detection About The Book: Algorithms of the Intelligent Web is an example-driven blueprint for creating applications that collect, analyze, and act on the massive quantities of data users leave in their wake as they use the web. You'll learn how to build Amazon- and Netflix-style recommendation engines, and how the same techniques apply to people matches on social-networking sites. See how click-trace analysis can result in smarter ad rotations. With a plethora of examples and extensive detail, this book shows you how to build Web 2.0 applications that are as smart as your users.

Data Algorithms

Data Algorithms
Title Data Algorithms PDF eBook
Author Mahmoud Parsian
Publisher "O'Reilly Media, Inc."
Pages 778
Release 2015-07-13
Genre Computers
ISBN 1491906154

Download Data Algorithms Book in PDF, Epub and Kindle

If you are ready to dive into the MapReduce framework for processing large datasets, this practical book takes you step by step through the algorithms and tools you need to build distributed MapReduce applications with Apache Hadoop or Apache Spark. Each chapter provides a recipe for solving a massive computational problem, such as building a recommendation system. You’ll learn how to implement the appropriate MapReduce solution with code that you can use in your projects. Dr. Mahmoud Parsian covers basic design patterns, optimization techniques, and data mining and machine learning solutions for problems in bioinformatics, genomics, statistics, and social network analysis. This book also includes an overview of MapReduce, Hadoop, and Spark. Topics include: Market basket analysis for a large set of transactions Data mining algorithms (K-means, KNN, and Naive Bayes) Using huge genomic data to sequence DNA and RNA Naive Bayes theorem and Markov chains for data and market prediction Recommendation algorithms and pairwise document similarity Linear regression, Cox regression, and Pearson correlation Allelic frequency and mining DNA Social network analysis (recommendation systems, counting triangles, sentiment analysis)

Algorithmic Thinking

Algorithmic Thinking
Title Algorithmic Thinking PDF eBook
Author Daniel Zingaro
Publisher No Starch Press
Pages 409
Release 2020-12-15
Genre Computers
ISBN 1718500807

Download Algorithmic Thinking Book in PDF, Epub and Kindle

A hands-on, problem-based introduction to building algorithms and data structures to solve problems with a computer. Algorithmic Thinking will teach you how to solve challenging programming problems and design your own algorithms. Daniel Zingaro, a master teacher, draws his examples from world-class programming competitions like USACO and IOI. You'll learn how to classify problems, choose data structures, and identify appropriate algorithms. You'll also learn how your choice of data structure, whether a hash table, heap, or tree, can affect runtime and speed up your algorithms; and how to adopt powerful strategies like recursion, dynamic programming, and binary search to solve challenging problems. Line-by-line breakdowns of the code will teach you how to use algorithms and data structures like: The breadth-first search algorithm to find the optimal way to play a board game or find the best way to translate a book Dijkstra's algorithm to determine how many mice can exit a maze or the number of fastest routes between two locations The union-find data structure to answer questions about connections in a social network or determine who are friends or enemies The heap data structure to determine the amount of money given away in a promotion The hash-table data structure to determine whether snowflakes are unique or identify compound words in a dictionary NOTE: Each problem in this book is available on a programming-judge website. You'll find the site's URL and problem ID in the description. What's better than a free correctness check?

Practical Deep Learning

Practical Deep Learning
Title Practical Deep Learning PDF eBook
Author Ronald T. Kneusel
Publisher No Starch Press
Pages 463
Release 2021-02-23
Genre Computers
ISBN 1718500742

Download Practical Deep Learning Book in PDF, Epub and Kindle

Practical Deep Learning teaches total beginners how to build the datasets and models needed to train neural networks for your own DL projects. If you’ve been curious about machine learning but didn’t know where to start, this is the book you’ve been waiting for. Focusing on the subfield of machine learning known as deep learning, it explains core concepts and gives you the foundation you need to start building your own models. Rather than simply outlining recipes for using existing toolkits, Practical Deep Learning teaches you the why of deep learning and will inspire you to explore further. All you need is basic familiarity with computer programming and high school math—the book will cover the rest. After an introduction to Python, you’ll move through key topics like how to build a good training dataset, work with the scikit-learn and Keras libraries, and evaluate your models’ performance. You’ll also learn: How to use classic machine learning models like k-Nearest Neighbors, Random Forests, and Support Vector Machines How neural networks work and how they’re trained How to use convolutional neural networks How to develop a successful deep learning model from scratch You’ll conduct experiments along the way, building to a final case study that incorporates everything you’ve learned. The perfect introduction to this dynamic, ever-expanding field, Practical Deep Learning will give you the skills and confidence to dive into your own machine learning projects.