Distributed Model Predictive Control Made Easy

Distributed Model Predictive Control Made Easy
Title Distributed Model Predictive Control Made Easy PDF eBook
Author José M. Maestre
Publisher Springer Science & Business Media
Pages 601
Release 2013-11-10
Genre Technology & Engineering
ISBN 9400770065

Download Distributed Model Predictive Control Made Easy Book in PDF, Epub and Kindle

The rapid evolution of computer science, communication, and information technology has enabled the application of control techniques to systems beyond the possibilities of control theory just a decade ago. Critical infrastructures such as electricity, water, traffic and intermodal transport networks are now in the scope of control engineers. The sheer size of such large-scale systems requires the adoption of advanced distributed control approaches. Distributed model predictive control (MPC) is one of the promising control methodologies for control of such systems. This book provides a state-of-the-art overview of distributed MPC approaches, while at the same time making clear directions of research that deserve more attention. The core and rationale of 35 approaches are carefully explained. Moreover, detailed step-by-step algorithmic descriptions of each approach are provided. These features make the book a comprehensive guide both for those seeking an introduction to distributed MPC as well as for those who want to gain a deeper insight in the wide range of distributed MPC techniques available.

Model Predictive Control in the Process Industry

Model Predictive Control in the Process Industry
Title Model Predictive Control in the Process Industry PDF eBook
Author Eduardo F. Camacho
Publisher Springer Science & Business Media
Pages 250
Release 2012-12-06
Genre Technology & Engineering
ISBN 1447130081

Download Model Predictive Control in the Process Industry Book in PDF, Epub and Kindle

Model Predictive Control is an important technique used in the process control industries. It has developed considerably in the last few years, because it is the most general way of posing the process control problem in the time domain. The Model Predictive Control formulation integrates optimal control, stochastic control, control of processes with dead time, multivariable control and future references. The finite control horizon makes it possible to handle constraints and non linear processes in general which are frequently found in industry. Focusing on implementation issues for Model Predictive Controllers in industry, it fills the gap between the empirical way practitioners use control algorithms and the sometimes abstractly formulated techniques developed by researchers. The text is firmly based on material from lectures given to senior undergraduate and graduate students and articles written by the authors.

Handbook of Model Predictive Control

Handbook of Model Predictive Control
Title Handbook of Model Predictive Control PDF eBook
Author Saša V. Raković
Publisher Springer
Pages 693
Release 2018-09-01
Genre Science
ISBN 3319774891

Download Handbook of Model Predictive Control Book in PDF, Epub and Kindle

Recent developments in model-predictive control promise remarkable opportunities for designing multi-input, multi-output control systems and improving the control of single-input, single-output systems. This volume provides a definitive survey of the latest model-predictive control methods available to engineers and scientists today. The initial set of chapters present various methods for managing uncertainty in systems, including stochastic model-predictive control. With the advent of affordable and fast computation, control engineers now need to think about using “computationally intensive controls,” so the second part of this book addresses the solution of optimization problems in “real” time for model-predictive control. The theory and applications of control theory often influence each other, so the last section of Handbook of Model Predictive Control rounds out the book with representative applications to automobiles, healthcare, robotics, and finance. The chapters in this volume will be useful to working engineers, scientists, and mathematicians, as well as students and faculty interested in the progression of control theory. Future developments in MPC will no doubt build from concepts demonstrated in this book and anyone with an interest in MPC will find fruitful information and suggestions for additional reading.

Distributed Cooperative Model Predictive Control of Networked Systems

Distributed Cooperative Model Predictive Control of Networked Systems
Title Distributed Cooperative Model Predictive Control of Networked Systems PDF eBook
Author Yuanyuan Zou
Publisher Springer Nature
Pages 159
Release 2022-10-03
Genre Technology & Engineering
ISBN 9811960844

Download Distributed Cooperative Model Predictive Control of Networked Systems Book in PDF, Epub and Kindle

This book is inspired by the development of distributed model predictive control of networked systems to save computation and communication sources. The significant new contribution is to show how to design efficient DMPCs that can be coordinated asynchronously with the increasing effectiveness of the event-triggering mechanism and how to improve the event-triggered DMPC for different requirements improvement of control performance, extension to interconnected networked systems, etc. The book is likely to be of interest to the persons who are engaged in researching control theory in academic institutes, the persons who go in for developing control systems in R&D institutes or companies, the control engineers who are engaged in the implementation of control algorithms, and people who are interested in the distributed MPC.

Distributed and economic model predictive control: beyond setpoint stabilization

Distributed and economic model predictive control: beyond setpoint stabilization
Title Distributed and economic model predictive control: beyond setpoint stabilization PDF eBook
Author Matthias A. Müller
Publisher Logos Verlag Berlin GmbH
Pages 154
Release 2014
Genre Mathematics
ISBN 3832538216

Download Distributed and economic model predictive control: beyond setpoint stabilization Book in PDF, Epub and Kindle

In this thesis, we study model predictive control (MPC) schemes for control tasks which go beyond the classical objective of setpoint stabilization. In particular, we consider two classes of such control problems, namely distributed MPC for cooperative control in networks of multiple interconnected systems, and economic MPC, where the main focus is on the optimization of some general performance criterion which is possibly related to the economics of a system. The contributions of this thesis are to analyze various systems theoretic properties occurring in these type of control problems, and to develop distributed and economic MPC schemes with certain desired (closed-loop) guarantees. To be more precise, in the field of distributed MPC we propose different algorithms which are suitable for general cooperative control tasks in networks of interacting systems. We show that the developed distributed MPC frameworks are such that the desired cooperative goal is achieved, while coupling constraints between the systems are satisfied. Furthermore, we discuss implementation and scalability issues for the derived algorithms, as well as the necessary communication requirements between the systems. In the field of economic MPC, the contributions of this thesis are threefold. Firstly, we analyze a crucial dissipativity condition, in particular its necessity for optimal steady-state operation of a system and its robustness with respect to parameter changes. Secondly, we develop economic MPC schemes which also take average constraints into account. Thirdly, we propose an economic MPC framework with self-tuning terminal cost and a generalized terminal constraint, and we show how self-tuning update rules for the terminal weight can be derived such that desirable closed-loop performance bounds can be established.

Model Predictive Control System Design and Implementation Using MATLAB®

Model Predictive Control System Design and Implementation Using MATLAB®
Title Model Predictive Control System Design and Implementation Using MATLAB® PDF eBook
Author Liuping Wang
Publisher Springer Science & Business Media
Pages 398
Release 2009-02-14
Genre Technology & Engineering
ISBN 1848823312

Download Model Predictive Control System Design and Implementation Using MATLAB® Book in PDF, Epub and Kindle

Model Predictive Control System Design and Implementation Using MATLAB® proposes methods for design and implementation of MPC systems using basis functions that confer the following advantages: - continuous- and discrete-time MPC problems solved in similar design frameworks; - a parsimonious parametric representation of the control trajectory gives rise to computationally efficient algorithms and better on-line performance; and - a more general discrete-time representation of MPC design that becomes identical to the traditional approach for an appropriate choice of parameters. After the theoretical presentation, coverage is given to three industrial applications. The subject of quadratic programming, often associated with the core optimization algorithms of MPC is also introduced and explained. The technical contents of this book is mainly based on advances in MPC using state-space models and basis functions. This volume includes numerous analytical examples and problems and MATLAB® programs and exercises.

Developments in Model-Based Optimization and Control

Developments in Model-Based Optimization and Control
Title Developments in Model-Based Optimization and Control PDF eBook
Author Sorin Olaru
Publisher Springer
Pages 385
Release 2015-12-23
Genre Technology & Engineering
ISBN 331926687X

Download Developments in Model-Based Optimization and Control Book in PDF, Epub and Kindle

This book deals with optimization methods as tools for decision making and control in the presence of model uncertainty. It is oriented to the use of these tools in engineering, specifically in automatic control design with all its components: analysis of dynamical systems, identification problems, and feedback control design. Developments in Model-Based Optimization and Control takes advantage of optimization-based formulations for such classical feedback design objectives as stability, performance and feasibility, afforded by the established body of results and methodologies constituting optimal control theory. It makes particular use of the popular formulation known as predictive control or receding-horizon optimization. The individual contributions in this volume are wide-ranging in subject matter but coordinated within a five-part structure covering material on: · complexity and structure in model predictive control (MPC); · collaborative MPC; · distributed MPC; · optimization-based analysis and design; and · applications to bioprocesses, multivehicle systems or energy management. The various contributions cover a subject spectrum including inverse optimality and more modern decentralized and cooperative formulations of receding-horizon optimal control. Readers will find fourteen chapters dedicated to optimization-based tools for robustness analysis, and decision-making in relation to feedback mechanisms—fault detection, for example—and three chapters putting forward applications where the model-based optimization brings a novel perspective. Developments in Model-Based Optimization and Control is a selection of contributions expanded and updated from the Optimisation-based Control and Estimation workshops held in November 2013 and November 2014. It forms a useful resource for academic researchers and graduate students interested in the state of the art in predictive control. Control engineers working in model-based optimization and control, particularly in its bioprocess applications will also find this collection instructive.