Dislocation Dynamics for High Strain-rate Plasticity

Dislocation Dynamics for High Strain-rate Plasticity
Title Dislocation Dynamics for High Strain-rate Plasticity PDF eBook
Author Eleanor Yi Kei Mak
Publisher
Pages 92
Release 2017
Genre Deformations (Mechanics)
ISBN

Download Dislocation Dynamics for High Strain-rate Plasticity Book in PDF, Epub and Kindle

There has been a trend of miniaturization in recent technological advances, particularly through the development of microelectromechanical systems (MEMS). To cope with the demand for increasing performance from ever smaller components, alternatives to traditional scaling techniques is required, for example, by exploiting scale-dependent material properties. The investigation of material behaviour through computer simulations is an attractive alternative to experimental techniques which are limited by scale and cost. Metallic crystalline solids are commonly the material of choice for MEMS components. The majority of a metal's capacity for deformation is irreversible, otherwise known as plasticity. The dislocation -- a defect in the crystal structure at the atomic level -- acts as the microscopic carrier of plasticity. The Discrete Dislocation Dynamics (DD) family of numerical models serves as a bridge between an atomistic and a continuum description of plasticity at the mesoscale. In continuum models, plasticity is captured through the homogenization of localized effects induced by dislocation activity. With DD models, the activity of discrete dislocations is instead explicitly simulated. Conventional DD models are purely mechanical and are based on a quasi-static formulation. For the purpose of high strain-rate loading scenarios, they fail to capture the localized thermal effects which emerge, as well as the inertial effects which are particularly relevant. As such, the fully Dynamic and coupled Thermo-Mechanical Dislocation Dynamics model (DTM-DD) was developed in this thesis to address the limitations of existing DD models in the context of high strain-rate plasticity. Inertia was included via an elastodynamic description of material behaviour and the consideration of dislocation mass; and thermal influences, through thermo-mechanical coupling and the temperature dependence of dislocation parameters. Using the DTM-DD, the high strain-rate plastic behaviour of metals was investigated. The interaction and interference of elastic waves was observed; and the implications and convergence of dynamic dislocation motion was determined. The framework of extension load testing was presented to investigate the influence and strain-rate sensitivity of system and dislocation parameters to inertial and thermal effects. The selection of the thermal boundary condition was identified to significantly influence the simulated material response. The nature of temperature dependence, as investigated through parameter studies of dislocation drag and nucleation strength, was shown to be a competition between influences causing material softening and hardening. The DTM-DD was extended to investigate the effect of loading rate on the nano-indentation of a thin film sample. Loading rate-dependent propagation of dislocation nucleation and slip as a plastic front was observed. Ultimately, the investigations using the DTM-DD demonstrate that the interplay between inertial and thermal effects are highly complex in a fully dynamic and thermo-coupled system.

Dislocation Dynamics and Plasticity

Dislocation Dynamics and Plasticity
Title Dislocation Dynamics and Plasticity PDF eBook
Author Taira Suzuki
Publisher Springer Science & Business Media
Pages 237
Release 2013-03-07
Genre Science
ISBN 364275774X

Download Dislocation Dynamics and Plasticity Book in PDF, Epub and Kindle

In the 1950s the direct observation of dislocations became possible, stimulat ing the interest of many research workers in the dynamics of dislocations. This led to major contributions to the understanding of the plasticity of various crys talline materials. During this time the study of metals and alloys of fcc and hcp structures developed remarkably. In particular, the discovery of the so-called in ertial effect caused by the electron and phonon frictional forces greatly influenced the quantitative understanding of the strength of these metallic materials. Statis tical studies of dislocations moving through random arrays of point obstacles played an important role in the above advances. These topics are described in Chaps. 2-4. Metals and alloys with bcc structure have large Peierls forces compared to those with fcc structure. The reasons for the delay in studying substances with bcc structure were mostly difficulties connected with the purification techniques and with microscopic studies of the dislocation core. In the 1970s, these difficulties were largely overcome by developments in experimental techniques and computer physics. Studies of dislocations in ionic and covalent bonding materials with large Peierls forces provided infonnation about the core structures of dislocations and their electronic interactions with charged particles. These are the main subjects in Chaps. 5-7.

Dislocation Mechanism-Based Crystal Plasticity

Dislocation Mechanism-Based Crystal Plasticity
Title Dislocation Mechanism-Based Crystal Plasticity PDF eBook
Author Zhuo Zhuang
Publisher Academic Press
Pages 452
Release 2019-04-12
Genre Technology & Engineering
ISBN 0128145927

Download Dislocation Mechanism-Based Crystal Plasticity Book in PDF, Epub and Kindle

Dislocation Based Crystal Plasticity: Theory and Computation at Micron and Submicron Scale provides a comprehensive introduction to the continuum and discreteness dislocation mechanism-based theories and computational methods of crystal plasticity at the micron and submicron scale. Sections cover the fundamental concept of conventional crystal plasticity theory at the macro-scale without size effect, strain gradient crystal plasticity theory based on Taylar law dislocation, mechanism at the mesoscale, phase-field theory of crystal plasticity, computation at the submicron scale, including single crystal plasticity theory, and the discrete-continuous model of crystal plasticity with three-dimensional discrete dislocation dynamics coupling finite element method (DDD-FEM). Three kinds of plastic deformation mechanisms for submicron pillars are systematically presented. Further sections discuss dislocation nucleation and starvation at high strain rate and temperature effect for dislocation annihilation mechanism. - Covers dislocation mechanism-based crystal plasticity theory and computation at the micron and submicron scale - Presents crystal plasticity theory without size effect - Deals with the 3D discrete-continuous (3D DCM) theoretic and computational model of crystal plasticity with 3D discrete dislocation dynamics (3D DDD) coupling finite element method (FEM) - Includes discrete dislocation mechanism-based theory and computation at the submicron scale with single arm source, coating micropillar, lower cyclic loading pillars, and dislocation starvation at the submicron scale

Dislocation Dynamics

Dislocation Dynamics
Title Dislocation Dynamics PDF eBook
Author Alan R. Rosenfield
Publisher
Pages 806
Release 1968
Genre Technology & Engineering
ISBN

Download Dislocation Dynamics Book in PDF, Epub and Kindle

Multiphysical Dislocation Dynamics Models for High Strain Rate Plastic Deformation

Multiphysical Dislocation Dynamics Models for High Strain Rate Plastic Deformation
Title Multiphysical Dislocation Dynamics Models for High Strain Rate Plastic Deformation PDF eBook
Author Oxana Skiba
Publisher
Pages 151
Release 2015
Genre
ISBN

Download Multiphysical Dislocation Dynamics Models for High Strain Rate Plastic Deformation Book in PDF, Epub and Kindle

Discrete Dislocation Dynamics (DD) models provide a framework to advance the understanding of plasticity. However, existing DD models currently do not account for multiphysical effects. Multiphysical phenomena are often present during plastic deformation. Two particular examples are the electromechanical behavior of plastically deformed piezoelectric materials and the thermomechanical behavior of metals under high strain rate plastic deformation. Thus, I present two new DD models, that take these behaviors into account. The basic carriers of plastic deformation are dislocations, which are crystallographic defects. Therefore, in the two new DD models, dislocations are directly modeled as crystallographic line defects in an elastic continuum. These models are based on the Extended Finite Element Method (XFEM), which is a versatile tool used to analyze discontinuities, singularities, localized deformations, and complex geometries. The XFEM captures the slip from edge dislocations by way of Heaviside step enrichment function.

Crystal Plasticity Finite Element Methods

Crystal Plasticity Finite Element Methods
Title Crystal Plasticity Finite Element Methods PDF eBook
Author Franz Roters
Publisher John Wiley & Sons
Pages 188
Release 2011-08-04
Genre Technology & Engineering
ISBN 3527642099

Download Crystal Plasticity Finite Element Methods Book in PDF, Epub and Kindle

Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.

Dislocations and Plastic Flow in Crystals

Dislocations and Plastic Flow in Crystals
Title Dislocations and Plastic Flow in Crystals PDF eBook
Author A. H. Cottrell
Publisher
Pages 223
Release 1953
Genre Dislocations in crystals
ISBN

Download Dislocations and Plastic Flow in Crystals Book in PDF, Epub and Kindle