Discrete-Time Dynamics of Structured Populations and Homogeneous Order-Preserving Operators
Title | Discrete-Time Dynamics of Structured Populations and Homogeneous Order-Preserving Operators PDF eBook |
Author | Horst R. Thieme |
Publisher | American Mathematical Society |
Pages | 357 |
Release | 2024-05-07 |
Genre | Mathematics |
ISBN | 1470474654 |
A fundamental question in the theory of discrete and continuous-time population models concerns the conditions for the extinction or persistence of populations – a question that is addressed mathematically by persistence theory. For some time, it has been recognized that if the dynamics of a structured population are mathematically captured by continuous or discrete semiflows and if these semiflows have first-order approximations, the spectral radii of certain bounded linear positive operators (better known as basic reproduction numbers) act as thresholds between population extinction and persistence. This book combines the theory of discrete-time dynamical systems with applications to population dynamics with an emphasis on spatial structure. The inclusion of two sexes that must mate to produce offspring leads to the study of operators that are (positively) homogeneous (of degree one) and order-preserving rather than linear and positive. While this book offers an introduction to ordered normed vector spaces, some background in real and functional analysis (including some measure theory for a few chapters) will be helpful. The appendix and selected exercises provide a primer about basic concepts and about relevant topics one may not find in every analysis textbook.
Bimonoidal Categories, $E_n$-Monoidal Categories, and Algebraic $K$-Theory
Title | Bimonoidal Categories, $E_n$-Monoidal Categories, and Algebraic $K$-Theory PDF eBook |
Author | Niles Johnson |
Publisher | American Mathematical Society |
Pages | 633 |
Release | 2024-10-23 |
Genre | Mathematics |
ISBN | 1470478110 |
Bimonoidal categories are categorical analogues of rings without additive inverses. They have been actively studied in category theory, homotopy theory, and algebraic $K$-theory since around 1970. There is an abundance of new applications and questions of bimonoidal categories in mathematics and other sciences. The three books published by the AMS in the Mathematical Surveys and Monographs series under the title Bimonoidal Categories, $E_n$-Monoidal Categories, and Algebraic $K$-Theory (Volume I: Symmetric Bimonoidal Categories and Monoidal Bicategories, Volume II: Braided Bimonoidal Categories with Applications, and Volume III: From Categories to Structured Ring Spectra?this book) provide a unified treatment of bimonoidal and higher ring-like categories, their connection with algebraic $K$-theory and homotopy theory, and applications to quantum groups and topological quantum computation. With ample background material, extensive coverage, detailed presentation of both well-known and new theorems, and a list of open questions, this work is a user-friendly resource for beginners and experts alike. Part 1 of this book is a detailed study of enriched monoidal categories, pointed diagram categories, and enriched multicategories. Using this machinery, Part 2 discusses the rich interconnection between the higher ring-like categories, homotopy theory, and algebraic $K$-theory. Starting with a chapter on homotopy theory background, the first half of Part 2 constructs the Segal $K$-theory functor and the Elmendorf-Mandell $K$-theory multifunctor from permutative categories to symmetric spectra. For the latter, the detailed treatment here includes identification and correction of some subtle errors concerning its extended domain. The second half applies the $K$-theory multifunctor to small ring, bipermutative, braided ring, and $E_n$-monoidal categories to obtain, respectively, strict ring, $E_{infty}$-, $E_2$-, and $E_n$-symmetric spectra.
Bimonoidal Categories, $E_n$-Monoidal Categories, and Algebraic $K$-Theory
Title | Bimonoidal Categories, $E_n$-Monoidal Categories, and Algebraic $K$-Theory PDF eBook |
Author | Donald Yau |
Publisher | American Mathematical Society |
Pages | 555 |
Release | 2024-10-08 |
Genre | Mathematics |
ISBN | 1470478099 |
Bimonoidal categories are categorical analogues of rings without additive inverses. They have been actively studied in category theory, homotopy theory, and algebraic $K$-theory since around 1970. There is an abundance of new applications and questions of bimonoidal categories in mathematics and other sciences. The three books published by the AMS in the Mathematical Surveys and Monographs series under the general title Bimonoidal Categories, $E_n$-Monoidal Categories, and Algebraic $K$-Theory (Volume I: Symmetric Bimonoidal Categories and Monoidal Bicategories?this book, Volume II: Braided Bimonoidal Categories with Applications, and Volume III: From Categories to Structured Ring Spectra) provide a unified treatment of bimonoidal and higher ring-like categories, their connection with algebraic $K$-theory and homotopy theory, and applications to quantum groups and topological quantum computation. With ample background material, extensive coverage, detailed presentation of both well-known and new theorems, and a list of open questions, this work is a user-friendly resource for beginners and experts alike. Part 1 of this book proves in detail Laplaza's two coherence theorems and May's strictification theorem of symmetric bimonoidal categories, as well as their bimonoidal analogues. This part includes detailed corrections to several inaccurate statements and proofs found in the literature. Part 2 proves Baez's Conjecture on the existence of a bi-initial object in a 2-category of symmetric bimonoidal categories. The next main theorem states that a matrix construction, involving the matrix product and the matrix tensor product, sends a symmetric bimonoidal category with invertible distributivity morphisms to a symmetric monoidal bicategory, with no strict structure morphisms in general.
Trees of Hyperbolic Spaces
Title | Trees of Hyperbolic Spaces PDF eBook |
Author | Michael Kapovich |
Publisher | American Mathematical Society |
Pages | 295 |
Release | 2024-08-15 |
Genre | Mathematics |
ISBN | 1470474255 |
This book offers an alternative proof of the Bestvina?Feighn combination theorem for trees of hyperbolic spaces and describes uniform quasigeodesics in such spaces. As one of the applications of their description of uniform quasigeodesics, the authors prove the existence of Cannon?Thurston maps for inclusion maps of total spaces of subtrees of hyperbolic spaces and of relatively hyperbolic spaces. They also analyze the structure of Cannon?Thurston laminations in this setting. Furthermore, some group-theoretic applications of these results are discussed. This book also contains background material on coarse geometry and geometric group theory.
Advances in Discrete Dynamical Systems, Difference Equations and Applications
Title | Advances in Discrete Dynamical Systems, Difference Equations and Applications PDF eBook |
Author | Saber Elaydi |
Publisher | Springer Nature |
Pages | 534 |
Release | 2023-03-25 |
Genre | Mathematics |
ISBN | 303125225X |
This book comprises selected papers of the 26th International Conference on Difference Equations and Applications, ICDEA 2021, held virtually at the University of Sarajevo, Bosnia and Herzegovina, in July 2021. The book includes the latest and significant research and achievements in difference equations, discrete dynamical systems, and their applications in various scientific disciplines. The book is interesting for Ph.D. students and researchers who want to keep up to date with the latest research, developments, and achievements in difference equations, discrete dynamical systems, and their applications, the real-world problems.
Progress on Difference Equations and Discrete Dynamical Systems
Title | Progress on Difference Equations and Discrete Dynamical Systems PDF eBook |
Author | Steve Baigent |
Publisher | Springer Nature |
Pages | 440 |
Release | 2021-01-04 |
Genre | Mathematics |
ISBN | 3030601072 |
This book comprises selected papers of the 25th International Conference on Difference Equations and Applications, ICDEA 2019, held at UCL, London, UK, in June 2019. The volume details the latest research on difference equations and discrete dynamical systems, and their application to areas such as biology, economics, and the social sciences. Some chapters have a tutorial style and cover the history and more recent developments for a particular topic, such as chaos, bifurcation theory, monotone dynamics, and global stability. Other chapters cover the latest personal research contributions of the author(s) in their particular area of expertise and range from the more technical articles on abstract systems to those that discuss the application of difference equations to real-world problems. The book is of interest to both Ph.D. students and researchers alike who wish to keep abreast of the latest developments in difference equations and discrete dynamical systems.
Positive Dynamical Systems in Discrete Time
Title | Positive Dynamical Systems in Discrete Time PDF eBook |
Author | Ulrich Krause |
Publisher | Walter de Gruyter GmbH & Co KG |
Pages | 366 |
Release | 2015-03-10 |
Genre | Mathematics |
ISBN | 3110365693 |
This book provides a systematic, rigorous and self-contained treatment of positive dynamical systems. A dynamical system is positive when all relevant variables of a system are nonnegative in a natural way. This is in biology, demography or economics, where the levels of populations or prices of goods are positive. The principle also finds application in electrical engineering, physics and computer sciences. "The author has greatly expanded the field of positive systems in surprising ways." - Prof. Dr. David G. Luenberger, Stanford University(USA)