Discrete Surfaces and Manifolds
Title | Discrete Surfaces and Manifolds PDF eBook |
Author | Li Chen |
Publisher | |
Pages | 162 |
Release | 2004 |
Genre | Geometry |
ISBN | 9780975512210 |
Digital and Discrete Geometry
Title | Digital and Discrete Geometry PDF eBook |
Author | Li M. Chen |
Publisher | Springer |
Pages | 325 |
Release | 2014-12-12 |
Genre | Computers |
ISBN | 3319120999 |
This book provides comprehensive coverage of the modern methods for geometric problems in the computing sciences. It also covers concurrent topics in data sciences including geometric processing, manifold learning, Google search, cloud data, and R-tree for wireless networks and BigData. The author investigates digital geometry and its related constructive methods in discrete geometry, offering detailed methods and algorithms. The book is divided into five sections: basic geometry; digital curves, surfaces and manifolds; discretely represented objects; geometric computation and processing; and advanced topics. Chapters especially focus on the applications of these methods to other types of geometry, algebraic topology, image processing, computer vision and computer graphics. Digital and Discrete Geometry: Theory and Algorithms targets researchers and professionals working in digital image processing analysis, medical imaging (such as CT and MRI) and informatics, computer graphics, computer vision, biometrics, and information theory. Advanced-level students in electrical engineering, mathematics, and computer science will also find this book useful as a secondary text book or reference. Praise for this book: This book does present a large collection of important concepts, of mathematical, geometrical, or algorithmical nature, that are frequently used in computer graphics and image processing. These concepts range from graphs through manifolds to homology. Of particular value are the sections dealing with discrete versions of classic continuous notions. The reader finds compact definitions and concise explanations that often appeal to intuition, avoiding finer, but then necessarily more complicated, arguments... As a first introduction, or as a reference for professionals working in computer graphics or image processing, this book should be of considerable value." - Prof. Dr. Rolf Klein, University of Bonn.
Hyperbolic Manifolds and Discrete Groups
Title | Hyperbolic Manifolds and Discrete Groups PDF eBook |
Author | Michael Kapovich |
Publisher | Springer Science & Business Media |
Pages | 486 |
Release | 2009-08-04 |
Genre | Mathematics |
ISBN | 0817649131 |
Hyperbolic Manifolds and Discrete Groups is at the crossroads of several branches of mathematics: hyperbolic geometry, discrete groups, 3-dimensional topology, geometric group theory, and complex analysis. The main focus throughout the text is on the "Big Monster," i.e., on Thurston’s hyperbolization theorem, which has not only completely changes the landscape of 3-dimensinal topology and Kleinian group theory but is one of the central results of 3-dimensional topology. The book is fairly self-contained, replete with beautiful illustrations, a rich set of examples of key concepts, numerous exercises, and an extensive bibliography and index. It should serve as an ideal graduate course/seminar text or as a comprehensive reference.
Variational Principles for Discrete Surfaces
Title | Variational Principles for Discrete Surfaces PDF eBook |
Author | Junfei Dai |
Publisher | International Press of Boston |
Pages | 160 |
Release | 2008 |
Genre | Computers |
ISBN |
"This new volume introduces readers to some of the current topics of research in the geometry of polyhedral surfaces, with applications to computer graphics. The main feature of the volume is a systematic introduction to the geometry of polyhedral surfaces based on the variational principle. The authors focus on using analytic methods in the study of some of the fundamental results and problems of polyhedral geometry: for instance, the Cauchy rigidity theorem, Thurston's circle packing theorem, rigidity of circle packing theorems, and Colin de Verdiere's variational principle. The present book is the first complete treatment of the vast, and expansively developed, field of polyhedral geometry."--Back cover.
Differential Geometry of Manifolds
Title | Differential Geometry of Manifolds PDF eBook |
Author | Stephen Lovett |
Publisher | CRC Press |
Pages | 466 |
Release | 2019-12-16 |
Genre | Mathematics |
ISBN | 0429602308 |
Differential Geometry of Manifolds, Second Edition presents the extension of differential geometry from curves and surfaces to manifolds in general. The book provides a broad introduction to the field of differentiable and Riemannian manifolds, tying together classical and modern formulations. It introduces manifolds in a both streamlined and mathematically rigorous way while keeping a view toward applications, particularly in physics. The author takes a practical approach, containing extensive exercises and focusing on applications, including the Hamiltonian formulations of mechanics, electromagnetism, string theory. The Second Edition of this successful textbook offers several notable points of revision. New to the Second Edition: New problems have been added and the level of challenge has been changed to the exercises Each section corresponds to a 60-minute lecture period, making it more user-friendly for lecturers Includes new sections which provide more comprehensive coverage of topics Features a new chapter on Multilinear Algebra
Visualization and Mathematics III
Title | Visualization and Mathematics III PDF eBook |
Author | Hans-Christian Hege |
Publisher | Springer Science & Business Media |
Pages | 455 |
Release | 2013-11-11 |
Genre | Psychology |
ISBN | 3662051052 |
A collection of state-of-the-art presentations on visualization problems in mathematics, fundamental mathematical research in computer graphics, and software frameworks for the application of visualization to real-world problems. Contributions have been written by leading experts and peer-refereed by an international editorial team. The book grew out of the third international workshop ‘Visualization and Mathematics’, May 22-25, 2002 in Berlin. The variety of topics covered makes the book ideal for researcher, lecturers, and practitioners.
New Horizons In Differential Geometry And Its Related Fields
Title | New Horizons In Differential Geometry And Its Related Fields PDF eBook |
Author | Toshiaki Adachi |
Publisher | World Scientific |
Pages | 257 |
Release | 2022-04-07 |
Genre | Mathematics |
ISBN | 9811248117 |
This volume presents recent developments in geometric structures on Riemannian manifolds and their discretizations. With chapters written by recognized experts, these discussions focus on contact structures, Kähler structures, fiber bundle structures and Einstein metrics. It also contains works on the geometric approach on coding theory.For researchers and students, this volume forms an invaluable source to learn about these subjects that are not only in the field of differential geometry but also in other wide related areas. It promotes and deepens the study of geometric structures.