Dirichlet Branes and Mirror Symmetry

Dirichlet Branes and Mirror Symmetry
Title Dirichlet Branes and Mirror Symmetry PDF eBook
Author
Publisher American Mathematical Soc.
Pages 698
Release 2009
Genre Mathematics
ISBN 0821838482

Download Dirichlet Branes and Mirror Symmetry Book in PDF, Epub and Kindle

Research in string theory has generated a rich interaction with algebraic geometry, with exciting work that includes the Strominger-Yau-Zaslow conjecture. This monograph builds on lectures at the 2002 Clay School on Geometry and String Theory that sought to bridge the gap between the languages of string theory and algebraic geometry.

Mirror Symmetry

Mirror Symmetry
Title Mirror Symmetry PDF eBook
Author Kentaro Hori
Publisher American Mathematical Soc.
Pages 954
Release 2003
Genre Mathematics
ISBN 0821829556

Download Mirror Symmetry Book in PDF, Epub and Kindle

This thorough and detailed exposition is the result of an intensive month-long course on mirror symmetry sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives with the aim of furthering interaction between the two fields. The material will be particularly useful for mathematicians and physicists who wish to advance their understanding across both disciplines. Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differential equations obtained from a ``mirror'' geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar-Vafa invariants. This book gives a single, cohesive treatment of mirror symmetry. Parts 1 and 2 develop the necessary mathematical and physical background from ``scratch''. The treatment is focused, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a ``pairing'' of geometries. The proof involves applying $R\leftrightarrow 1/R$ circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic setting, beginning with the moduli spaces of curves and maps, and uses localization techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. Part 5 is devoted to advanced topi This one-of-a-kind book is suitable for graduate students and research mathematicians interested in mathematics and mathematical and theoretical physics.

Strings and Geometry

Strings and Geometry
Title Strings and Geometry PDF eBook
Author Clay Mathematics Institute. Summer School
Publisher American Mathematical Soc.
Pages 396
Release 2004
Genre Mathematics
ISBN 9780821837153

Download Strings and Geometry Book in PDF, Epub and Kindle

Contains selection of expository and research article by lecturers at the school. Highlights current interests of researchers working at the interface between string theory and algebraic supergravity, supersymmetry, D-branes, the McKay correspondence andFourer-Mukai transform.

Symplectic Geometry and Mirror Symmetry

Symplectic Geometry and Mirror Symmetry
Title Symplectic Geometry and Mirror Symmetry PDF eBook
Author Kodŭng Kwahagwŏn (Korea). International Conference
Publisher World Scientific
Pages 940
Release 2001
Genre Mirror symmetry
ISBN 9789812799821

Download Symplectic Geometry and Mirror Symmetry Book in PDF, Epub and Kindle

In 1993, M. Kontsevich proposed a conceptual framework for explaining the phenomenon of mirror symmetry. Mirror symmetry had been discovered by physicists in string theory as a duality between families of three-dimensional Calabi–Yau manifolds. Kontsevich's proposal uses Fukaya's construction of the A∞-category of Lagrangian submanifolds on the symplectic side and the derived category of coherent sheaves on the complex side. The theory of mirror symmetry was further enhanced by physicists in the language of D-branes and also by Strominger–Yau–Zaslow in the geometric set-up of (special) Lagrangian torus fibrations. It rapidly expanded its scope across from geometry, topology, algebra to physics. In this volume, leading experts in the field explore recent developments in relation to homological mirror symmetry, Floer theory, D-branes and Gromov–Witten invariants. Kontsevich-Soibelman describe their solution to the mirror conjecture on the abelian variety based on the deformation theory of A∞-categories, and Ohta describes recent work on the Lagrangian intersection Floer theory by Fukaya–Oh–Ohta–Ono which takes an important step towards a rigorous construction of the A∞-category. There follow a number of contributions on the homological mirror symmetry, D-branes and the Gromov–Witten invariants, e.g. Getzler shows how the Toda conjecture follows from recent work of Givental, Okounkov and Pandharipande. This volume provides a timely presentation of the important developments of recent years in this rapidly growing field.

Mirror Symmetry and Algebraic Geometry

Mirror Symmetry and Algebraic Geometry
Title Mirror Symmetry and Algebraic Geometry PDF eBook
Author David A. Cox
Publisher American Mathematical Soc.
Pages 498
Release 1999
Genre Mathematics
ISBN 082182127X

Download Mirror Symmetry and Algebraic Geometry Book in PDF, Epub and Kindle

Mirror symmetry began when theoretical physicists made some astonishing predictions about rational curves on quintic hypersurfaces in four-dimensional projective space. Understanding the mathematics behind these predictions has been a substantial challenge. This book is the first completely comprehensive monograph on mirror symmetry, covering the original observations by the physicists through the most recent progress made to date. Subjects discussed include toric varieties, Hodge theory, Kahler geometry, moduli of stable maps, Calabi-Yau manifolds, quantum cohomology, Gromov-Witten invariants, and the mirror theorem. This title features: numerous examples worked out in detail; an appendix on mathematical physics; an exposition of the algebraic theory of Gromov-Witten invariants and quantum cohomology; and, a proof of the mirror theorem for the quintic threefold.

Dirichlet Branes and Nonperturbative Aspects of Supersymmetric String and Gauge Theories

Dirichlet Branes and Nonperturbative Aspects of Supersymmetric String and Gauge Theories
Title Dirichlet Branes and Nonperturbative Aspects of Supersymmetric String and Gauge Theories PDF eBook
Author
Publisher
Pages 117
Release 1999
Genre
ISBN

Download Dirichlet Branes and Nonperturbative Aspects of Supersymmetric String and Gauge Theories Book in PDF, Epub and Kindle

In chapter 1 the author reviews some elements of string theory relevant to the rest of this report. He touches on both the classical, i.e. perturbative, string physics before D-branes rise to prominence, and some of the progresses they brought forth. In chapter 2 he proceeds to give an exact algebraic formulation of D-branes in curved spaces. This allows one to classify them in backgrounds of interest and study their geometric properties. He applies this formalism to string theory on Calabi-Yau and other supersymmetry preserving manifolds. Then he studies the behavior of the D-branes under mirror symmetry in chapter 3. Mirror symmetry is known to be a symmetry of string theory perturbatively. He finds evidence for its nonperturbative validity when D-branes are also considered and compute some dynamical consequences. In chapter 4 he turns to examine the consistency of curved and/or intersecting D-brane configurations. They have been used recently to extract information about the field theories that arise in certain limits. It turns out that there are potential quantum mechanical inconsistencies associated with them. What saves the day are certain subtle topological properties of D-branes. This resolution has implications for the conserved charges carried by the D-branes, which he computes for the cases studied in chapter 2. In chapter 5 he uses intersecting brane configurations to study three dimensional supersymmetric gauge theories. There is also a mirror symmetry there that, among other things, exchanges classical and quantum mechanical quantities of a (mirror) pair of theories. It has an elegant realization in term of a symmetry of string theory involving D-branes. The author employs it to study a wide class of 3d models. He also predicts new mirror pairs and unconventional 3d field theories without Lagrangian descriptions.

Superschool on Derived Categories and D-branes

Superschool on Derived Categories and D-branes
Title Superschool on Derived Categories and D-branes PDF eBook
Author Matthew Ballard
Publisher Springer
Pages 261
Release 2018-08-21
Genre Mathematics
ISBN 3319916262

Download Superschool on Derived Categories and D-branes Book in PDF, Epub and Kindle

This book consists of a series of introductory lectures on mirror symmetry and its surrounding topics. These lectures were provided by participants in the PIMS Superschool for Derived Categories and D-branes in July 2016. Together, they form a comprehensive introduction to the field that integrates perspectives from mathematicians and physicists alike. These proceedings provide a pleasant and broad introduction into modern research topics surrounding string theory and mirror symmetry that is approachable to readers new to the subjects. These topics include constructions of various mirror pairs, approaches to mirror symmetry, connections to homological algebra, and physical motivations. Of particular interest is the connection between GLSMs, D-branes, birational geometry, and derived categories, which is explained both from a physical and mathematical perspective. The introductory lectures provided herein highlight many features of this emerging field and give concrete connections between the physics and the math. Mathematical readers will come away with a broader perspective on this field and a bit of physical intuition, while physicists will gain an introductory overview of the developing mathematical realization of physical predictions.