Directed Algebraic Topology and Concurrency

Directed Algebraic Topology and Concurrency
Title Directed Algebraic Topology and Concurrency PDF eBook
Author Lisbeth Fajstrup
Publisher Springer
Pages 171
Release 2016-03-02
Genre Computers
ISBN 3319153986

Download Directed Algebraic Topology and Concurrency Book in PDF, Epub and Kindle

This monograph presents an application of concepts and methods from algebraic topology to models of concurrent processes in computer science and their analysis. Taking well-known discrete models for concurrent processes in resource management as a point of departure, the book goes on to refine combinatorial and topological models. In the process, it develops tools and invariants for the new discipline directed algebraic topology, which is driven by fundamental research interests as well as by applications, primarily in the static analysis of concurrent programs. The state space of a concurrent program is described as a higher-dimensional space, the topology of which encodes the essential properties of the system. In order to analyse all possible executions in the state space, more than “just” the topological properties have to be considered: Execution paths need to respect a partial order given by the time flow. As a result, tools and concepts from topology have to be extended to take privileged directions into account. The target audience for this book consists of graduate students, researchers and practitioners in the field, mathematicians and computer scientists alike.

Directed Algebraic Topology

Directed Algebraic Topology
Title Directed Algebraic Topology PDF eBook
Author Marco Grandis
Publisher Cambridge University Press
Pages 445
Release 2009-09-17
Genre Mathematics
ISBN 1139482580

Download Directed Algebraic Topology Book in PDF, Epub and Kindle

This is the first authored book to be dedicated to the new field of directed algebraic topology that arose in the 1990s, in homotopy theory and in the theory of concurrent processes. Its general aim can be stated as 'modelling non-reversible phenomena' and its domain should be distinguished from that of classical algebraic topology by the principle that directed spaces have privileged directions and directed paths therein need not be reversible. Its homotopical tools (corresponding in the classical case to ordinary homotopies, fundamental group and fundamental groupoid) should be similarly 'non-reversible': directed homotopies, fundamental monoid and fundamental category. Homotopy constructions occur here in a directed version, which gives rise to new 'shapes', like directed cones and directed spheres. Applications will deal with domains where privileged directions appear, including rewrite systems, traffic networks and biological systems. The most developed examples can be found in the area of concurrency.

A Concise Course in Algebraic Topology

A Concise Course in Algebraic Topology
Title A Concise Course in Algebraic Topology PDF eBook
Author J. P. May
Publisher University of Chicago Press
Pages 262
Release 1999-09
Genre Mathematics
ISBN 9780226511832

Download A Concise Course in Algebraic Topology Book in PDF, Epub and Kindle

Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.

Lecture Notes in Algebraic Topology

Lecture Notes in Algebraic Topology
Title Lecture Notes in Algebraic Topology PDF eBook
Author James F. Davis
Publisher American Mathematical Society
Pages 385
Release 2023-05-22
Genre Mathematics
ISBN 1470473682

Download Lecture Notes in Algebraic Topology Book in PDF, Epub and Kindle

The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic and geometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, some knowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstruction theory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to present proofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the “big picture”, teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, and homological algebra. The exposition in the text is clear; special cases are presented over complex general statements.

Lectures On Algebraic Topology

Lectures On Algebraic Topology
Title Lectures On Algebraic Topology PDF eBook
Author Haynes R Miller
Publisher World Scientific
Pages 405
Release 2021-09-20
Genre Mathematics
ISBN 9811231265

Download Lectures On Algebraic Topology Book in PDF, Epub and Kindle

Algebraic Topology and basic homotopy theory form a fundamental building block for much of modern mathematics. These lecture notes represent a culmination of many years of leading a two-semester course in this subject at MIT. The style is engaging and student-friendly, but precise. Every lecture is accompanied by exercises. It begins slowly in order to gather up students with a variety of backgrounds, but gains pace as the course progresses, and by the end the student has a command of all the basic techniques of classical homotopy theory.

A Combinatorial Introduction to Topology

A Combinatorial Introduction to Topology
Title A Combinatorial Introduction to Topology PDF eBook
Author Michael Henle
Publisher Courier Corporation
Pages 340
Release 1994-01-01
Genre Mathematics
ISBN 9780486679662

Download A Combinatorial Introduction to Topology Book in PDF, Epub and Kindle

Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.

Combinatorial Algebraic Topology

Combinatorial Algebraic Topology
Title Combinatorial Algebraic Topology PDF eBook
Author Dimitry Kozlov
Publisher Springer Science & Business Media
Pages 416
Release 2008-01-08
Genre Mathematics
ISBN 9783540730514

Download Combinatorial Algebraic Topology Book in PDF, Epub and Kindle

This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.