Dirac Operators in Representation Theory

Dirac Operators in Representation Theory
Title Dirac Operators in Representation Theory PDF eBook
Author Jing-Song Huang
Publisher Springer Science & Business Media
Pages 205
Release 2007-05-27
Genre Mathematics
ISBN 0817644938

Download Dirac Operators in Representation Theory Book in PDF, Epub and Kindle

This book presents a comprehensive treatment of important new ideas on Dirac operators and Dirac cohomology. Using Dirac operators as a unifying theme, the authors demonstrate how some of the most important results in representation theory fit together when viewed from this perspective. The book is an excellent contribution to the mathematical literature of representation theory, and this self-contained exposition offers a systematic examination and panoramic view of the subject. The material will be of interest to researchers and graduate students in representation theory, differential geometry, and physics.

Clifford Algebras and Dirac Operators in Harmonic Analysis

Clifford Algebras and Dirac Operators in Harmonic Analysis
Title Clifford Algebras and Dirac Operators in Harmonic Analysis PDF eBook
Author John E. Gilbert
Publisher Cambridge University Press
Pages 346
Release 1991-07-26
Genre Mathematics
ISBN 9780521346542

Download Clifford Algebras and Dirac Operators in Harmonic Analysis Book in PDF, Epub and Kindle

The aim of this book is to unite the seemingly disparate topics of Clifford algebras, analysis on manifolds, and harmonic analysis. The authors show how algebra, geometry, and differential equations play a more fundamental role in Euclidean Fourier analysis. They then link their presentation of the Euclidean theory naturally to the representation theory of semi-simple Lie groups.

Lie Groups, Geometry, and Representation Theory

Lie Groups, Geometry, and Representation Theory
Title Lie Groups, Geometry, and Representation Theory PDF eBook
Author Victor G. Kac
Publisher Springer
Pages 545
Release 2018-12-12
Genre Mathematics
ISBN 3030021912

Download Lie Groups, Geometry, and Representation Theory Book in PDF, Epub and Kindle

This volume, dedicated to the memory of the great American mathematician Bertram Kostant (May 24, 1928 – February 2, 2017), is a collection of 19 invited papers by leading mathematicians working in Lie theory, representation theory, algebra, geometry, and mathematical physics. Kostant’s fundamental work in all of these areas has provided deep new insights and connections, and has created new fields of research. This volume features the only published articles of important recent results of the contributors with full details of their proofs. Key topics include: Poisson structures and potentials (A. Alekseev, A. Berenstein, B. Hoffman) Vertex algebras (T. Arakawa, K. Kawasetsu) Modular irreducible representations of semisimple Lie algebras (R. Bezrukavnikov, I. Losev) Asymptotic Hecke algebras (A. Braverman, D. Kazhdan) Tensor categories and quantum groups (A. Davydov, P. Etingof, D. Nikshych) Nil-Hecke algebras and Whittaker D-modules (V. Ginzburg) Toeplitz operators (V. Guillemin, A. Uribe, Z. Wang) Kashiwara crystals (A. Joseph) Characters of highest weight modules (V. Kac, M. Wakimoto) Alcove polytopes (T. Lam, A. Postnikov) Representation theory of quantized Gieseker varieties (I. Losev) Generalized Bruhat cells and integrable systems (J.-H. Liu, Y. Mi) Almost characters (G. Lusztig) Verlinde formulas (E. Meinrenken) Dirac operator and equivariant index (P.-É. Paradan, M. Vergne) Modality of representations and geometry of θ-groups (V. L. Popov) Distributions on homogeneous spaces (N. Ressayre) Reduction of orthogonal representations (J.-P. Serre)

Lie Algebra Cohomology and the Generalized Borel-Weil Theorem

Lie Algebra Cohomology and the Generalized Borel-Weil Theorem
Title Lie Algebra Cohomology and the Generalized Borel-Weil Theorem PDF eBook
Author Bertram Kostant
Publisher
Pages 218
Release 1960
Genre Divergent series
ISBN

Download Lie Algebra Cohomology and the Generalized Borel-Weil Theorem Book in PDF, Epub and Kindle

Dirac Operators in Riemannian Geometry

Dirac Operators in Riemannian Geometry
Title Dirac Operators in Riemannian Geometry PDF eBook
Author Thomas Friedrich
Publisher American Mathematical Soc.
Pages 213
Release 2000
Genre Mathematics
ISBN 0821820559

Download Dirac Operators in Riemannian Geometry Book in PDF, Epub and Kindle

For a Riemannian manifold M, the geometry, topology and analysis are interrelated in ways that have become widely explored in modern mathematics. Bounds on the curvature can have significant implications for the topology of the manifold. The eigenvalues of the Laplacian are naturally linked to the geometry of the manifold. For manifolds that admit spin structures, one obtains further information from equations involving Dirac operators and spinor fields. In the case of four-manifolds, for example, one has the remarkable Seiberg-Witten invariants. In this text, Friedrich examines the Dirac operator on Riemannian manifolds, especially its connection with the underlying geometry and topology of the manifold. The presentation includes a review of Clifford algebras, spin groups and the spin representation, as well as a review of spin structures and $\textrm{spin}mathbb{C}$ structures. With this foundation established, the Dirac operator is defined and studied, with special attention to the cases of Hermitian manifolds and symmetric spaces. Then, certain analytic properties are established, including self-adjointness and the Fredholm property. An important link between the geometry and the analysis is provided by estimates for the eigenvalues of the Dirac operator in terms of the scalar curvature and the sectional curvature. Considerations of Killing spinors and solutions of the twistor equation on M lead to results about whether M is an Einstein manifold or conformally equivalent to one. Finally, in an appendix, Friedrich gives a concise introduction to the Seiberg-Witten invariants, which are a powerful tool for the study of four-manifolds. There is also an appendix reviewing principal bundles and connections. This detailed book with elegant proofs is suitable as a text for courses in advanced differential geometry and global analysis, and can serve as an introduction for further study in these areas. This edition is translated from the German edition published by Vieweg Verlag.

Heat Kernels and Dirac Operators

Heat Kernels and Dirac Operators
Title Heat Kernels and Dirac Operators PDF eBook
Author Nicole Berline
Publisher Springer Science & Business Media
Pages 384
Release 2003-12-08
Genre Mathematics
ISBN 9783540200628

Download Heat Kernels and Dirac Operators Book in PDF, Epub and Kindle

In the first edition of this book, simple proofs of the Atiyah-Singer Index Theorem for Dirac operators on compact Riemannian manifolds and its generalizations (due to the authors and J.-M. Bismut) were presented, using an explicit geometric construction of the heat kernel of a generalized Dirac operator; the new edition makes this popular book available to students and researchers in an attractive paperback.

Elliptic Boundary Problems for Dirac Operators

Elliptic Boundary Problems for Dirac Operators
Title Elliptic Boundary Problems for Dirac Operators PDF eBook
Author Bernhelm Booß-Bavnbek
Publisher Springer Science & Business Media
Pages 322
Release 2012-12-06
Genre Mathematics
ISBN 1461203376

Download Elliptic Boundary Problems for Dirac Operators Book in PDF, Epub and Kindle

Elliptic boundary problems have enjoyed interest recently, espe cially among C* -algebraists and mathematical physicists who want to understand single aspects of the theory, such as the behaviour of Dirac operators and their solution spaces in the case of a non-trivial boundary. However, the theory of elliptic boundary problems by far has not achieved the same status as the theory of elliptic operators on closed (compact, without boundary) manifolds. The latter is nowadays rec ognized by many as a mathematical work of art and a very useful technical tool with applications to a multitude of mathematical con texts. Therefore, the theory of elliptic operators on closed manifolds is well-known not only to a small group of specialists in partial dif ferential equations, but also to a broad range of researchers who have specialized in other mathematical topics. Why is the theory of elliptic boundary problems, compared to that on closed manifolds, still lagging behind in popularity? Admittedly, from an analytical point of view, it is a jigsaw puzzle which has more pieces than does the elliptic theory on closed manifolds. But that is not the only reason.