Dirac Operators in Representation Theory
Title | Dirac Operators in Representation Theory PDF eBook |
Author | Jing-Song Huang |
Publisher | Springer Science & Business Media |
Pages | 205 |
Release | 2007-05-27 |
Genre | Mathematics |
ISBN | 0817644938 |
This book presents a comprehensive treatment of important new ideas on Dirac operators and Dirac cohomology. Using Dirac operators as a unifying theme, the authors demonstrate how some of the most important results in representation theory fit together when viewed from this perspective. The book is an excellent contribution to the mathematical literature of representation theory, and this self-contained exposition offers a systematic examination and panoramic view of the subject. The material will be of interest to researchers and graduate students in representation theory, differential geometry, and physics.
Introduction to Symplectic Dirac Operators
Title | Introduction to Symplectic Dirac Operators PDF eBook |
Author | Katharina Habermann |
Publisher | Springer |
Pages | 131 |
Release | 2006-10-28 |
Genre | Mathematics |
ISBN | 3540334211 |
This volume is the first one that gives a systematic and self-contained introduction to the theory of symplectic Dirac operators and reflects the current state of the subject. At the same time, it is intended to establish the idea that symplectic spin geometry and symplectic Dirac operators may give valuable tools in symplectic geometry and symplectic topology, which have become important fields and very active areas of mathematical research.
Dirac Operators in Riemannian Geometry
Title | Dirac Operators in Riemannian Geometry PDF eBook |
Author | Thomas Friedrich |
Publisher | American Mathematical Soc. |
Pages | 213 |
Release | 2000 |
Genre | Mathematics |
ISBN | 0821820559 |
For a Riemannian manifold M, the geometry, topology and analysis are interrelated in ways that have become widely explored in modern mathematics. Bounds on the curvature can have significant implications for the topology of the manifold. The eigenvalues of the Laplacian are naturally linked to the geometry of the manifold. For manifolds that admit spin structures, one obtains further information from equations involving Dirac operators and spinor fields. In the case of four-manifolds, for example, one has the remarkable Seiberg-Witten invariants. In this text, Friedrich examines the Dirac operator on Riemannian manifolds, especially its connection with the underlying geometry and topology of the manifold. The presentation includes a review of Clifford algebras, spin groups and the spin representation, as well as a review of spin structures and $\textrm{spin}mathbb{C}$ structures. With this foundation established, the Dirac operator is defined and studied, with special attention to the cases of Hermitian manifolds and symmetric spaces. Then, certain analytic properties are established, including self-adjointness and the Fredholm property. An important link between the geometry and the analysis is provided by estimates for the eigenvalues of the Dirac operator in terms of the scalar curvature and the sectional curvature. Considerations of Killing spinors and solutions of the twistor equation on M lead to results about whether M is an Einstein manifold or conformally equivalent to one. Finally, in an appendix, Friedrich gives a concise introduction to the Seiberg-Witten invariants, which are a powerful tool for the study of four-manifolds. There is also an appendix reviewing principal bundles and connections. This detailed book with elegant proofs is suitable as a text for courses in advanced differential geometry and global analysis, and can serve as an introduction for further study in these areas. This edition is translated from the German edition published by Vieweg Verlag.
Clifford Algebras and Dirac Operators in Harmonic Analysis
Title | Clifford Algebras and Dirac Operators in Harmonic Analysis PDF eBook |
Author | John E. Gilbert |
Publisher | Cambridge University Press |
Pages | 346 |
Release | 1991-07-26 |
Genre | Mathematics |
ISBN | 9780521346542 |
The aim of this book is to unite the seemingly disparate topics of Clifford algebras, analysis on manifolds, and harmonic analysis. The authors show how algebra, geometry, and differential equations play a more fundamental role in Euclidean Fourier analysis. They then link their presentation of the Euclidean theory naturally to the representation theory of semi-simple Lie groups.
Heat Kernels and Dirac Operators
Title | Heat Kernels and Dirac Operators PDF eBook |
Author | Nicole Berline |
Publisher | Springer Science & Business Media |
Pages | 384 |
Release | 2003-12-08 |
Genre | Mathematics |
ISBN | 9783540200628 |
In the first edition of this book, simple proofs of the Atiyah-Singer Index Theorem for Dirac operators on compact Riemannian manifolds and its generalizations (due to the authors and J.-M. Bismut) were presented, using an explicit geometric construction of the heat kernel of a generalized Dirac operator; the new edition makes this popular book available to students and researchers in an attractive paperback.
Dirac Operators in Analysis
Title | Dirac Operators in Analysis PDF eBook |
Author | John Ryan |
Publisher | CRC Press |
Pages | 260 |
Release | 1999-01-06 |
Genre | Mathematics |
ISBN | 9780582356818 |
Clifford analysis has blossomed into an increasingly relevant and fashionable area of research in mathematical analysis-it fits conveniently at the crossroads of many fundamental areas of research, including classical harmonic analysis, operator theory, and boundary behavior. This book presents a state-of-the-art account of the most recent developments in the field of Clifford analysis with contributions by many of the field's leading researchers.
Elliptic Boundary Problems for Dirac Operators
Title | Elliptic Boundary Problems for Dirac Operators PDF eBook |
Author | Bernhelm Booß-Bavnbek |
Publisher | Springer Science & Business Media |
Pages | 322 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461203376 |
Elliptic boundary problems have enjoyed interest recently, espe cially among C* -algebraists and mathematical physicists who want to understand single aspects of the theory, such as the behaviour of Dirac operators and their solution spaces in the case of a non-trivial boundary. However, the theory of elliptic boundary problems by far has not achieved the same status as the theory of elliptic operators on closed (compact, without boundary) manifolds. The latter is nowadays rec ognized by many as a mathematical work of art and a very useful technical tool with applications to a multitude of mathematical con texts. Therefore, the theory of elliptic operators on closed manifolds is well-known not only to a small group of specialists in partial dif ferential equations, but also to a broad range of researchers who have specialized in other mathematical topics. Why is the theory of elliptic boundary problems, compared to that on closed manifolds, still lagging behind in popularity? Admittedly, from an analytical point of view, it is a jigsaw puzzle which has more pieces than does the elliptic theory on closed manifolds. But that is not the only reason.