Diffusion Processes and Partial Differential Equations
Title | Diffusion Processes and Partial Differential Equations PDF eBook |
Author | Kazuaki Taira |
Publisher | |
Pages | 480 |
Release | 1988 |
Genre | Mathematics |
ISBN |
This book provides a careful and accessible exposition of functional analytic methods in stochastic analysis. It focuses on the relationship between Markov processes and elliptic boundary value problems and explores several recent developments in the theory of partial differential equations which have made further progress in the study of Markov processes possible. This book will have great appeal to both advanced students and researchers as an introduction to three interrelated subjects in analysis (Markov processes, semigroups, and elliptic boundary value problems), providing powerful methods for future research.
Entropy Methods for Diffusive Partial Differential Equations
Title | Entropy Methods for Diffusive Partial Differential Equations PDF eBook |
Author | Ansgar Jüngel |
Publisher | Springer |
Pages | 146 |
Release | 2016-06-17 |
Genre | Mathematics |
ISBN | 3319342193 |
This book presents a range of entropy methods for diffusive PDEs devised by many researchers in the course of the past few decades, which allow us to understand the qualitative behavior of solutions to diffusive equations (and Markov diffusion processes). Applications include the large-time asymptotics of solutions, the derivation of convex Sobolev inequalities, the existence and uniqueness of weak solutions, and the analysis of discrete and geometric structures of the PDEs. The purpose of the book is to provide readers an introduction to selected entropy methods that can be found in the research literature. In order to highlight the core concepts, the results are not stated in the widest generality and most of the arguments are only formal (in the sense that the functional setting is not specified or sufficient regularity is supposed). The text is also suitable for advanced master and PhD students and could serve as a textbook for special courses and seminars.
Diffusion Processes and their Sample Paths
Title | Diffusion Processes and their Sample Paths PDF eBook |
Author | Kiyosi Itô |
Publisher | Springer Science & Business Media |
Pages | 341 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3642620256 |
Since its first publication in 1965 in the series Grundlehren der mathematischen Wissenschaften this book has had a profound and enduring influence on research into the stochastic processes associated with diffusion phenomena. Generations of mathematicians have appreciated the clarity of the descriptions given of one- or more- dimensional diffusion processes and the mathematical insight provided into Brownian motion. Now, with its republication in the Classics in Mathematics it is hoped that a new generation will be able to enjoy the classic text of Itô and McKean.
Stochastic Processes and Applications
Title | Stochastic Processes and Applications PDF eBook |
Author | Grigorios A. Pavliotis |
Publisher | Springer |
Pages | 345 |
Release | 2014-11-19 |
Genre | Mathematics |
ISBN | 1493913239 |
This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.
Stochastic Analysis and Diffusion Processes
Title | Stochastic Analysis and Diffusion Processes PDF eBook |
Author | Gopinath Kallianpur |
Publisher | OUP Oxford |
Pages | 368 |
Release | 2014-01-09 |
Genre | Mathematics |
ISBN | 0191004529 |
Stochastic Analysis and Diffusion Processes presents a simple, mathematical introduction to Stochastic Calculus and its applications. The book builds the basic theory and offers a careful account of important research directions in Stochastic Analysis. The breadth and power of Stochastic Analysis, and probabilistic behavior of diffusion processes are told without compromising on the mathematical details. Starting with the construction of stochastic processes, the book introduces Brownian motion and martingales. The book proceeds to construct stochastic integrals, establish the Itô formula, and discuss its applications. Next, attention is focused on stochastic differential equations (SDEs) which arise in modeling physical phenomena, perturbed by random forces. Diffusion processes are solutions of SDEs and form the main theme of this book. The Stroock-Varadhan martingale problem, the connection between diffusion processes and partial differential equations, Gaussian solutions of SDEs, and Markov processes with jumps are presented in successive chapters. The book culminates with a careful treatment of important research topics such as invariant measures, ergodic behavior, and large deviation principle for diffusions. Examples are given throughout the book to illustrate concepts and results. In addition, exercises are given at the end of each chapter that will help the reader to understand the concepts better. The book is written for graduate students, young researchers and applied scientists who are interested in stochastic processes and their applications. The reader is assumed to be familiar with probability theory at graduate level. The book can be used as a text for a graduate course on Stochastic Analysis.
Multidimensional Diffusion Processes
Title | Multidimensional Diffusion Processes PDF eBook |
Author | Daniel W. Stroock |
Publisher | Springer |
Pages | 338 |
Release | 2007-02-03 |
Genre | Mathematics |
ISBN | 3540289992 |
From the reviews: "This book is an excellent presentation of the application of martingale theory to the theory of Markov processes, especially multidimensional diffusions. [...] This monograph can be recommended to graduate students and research workers but also to all interested in Markov processes from a more theoretical point of view." Mathematische Operationsforschung und Statistik
Controlled Diffusion Processes
Title | Controlled Diffusion Processes PDF eBook |
Author | N. V. Krylov |
Publisher | Springer Science & Business Media |
Pages | 314 |
Release | 2008-09-26 |
Genre | Science |
ISBN | 3540709142 |
Stochastic control theory is a relatively young branch of mathematics. The beginning of its intensive development falls in the late 1950s and early 1960s. ~urin~ that period an extensive literature appeared on optimal stochastic control using the quadratic performance criterion (see references in Wonham [76]). At the same time, Girsanov [25] and Howard [26] made the first steps in constructing a general theory, based on Bellman's technique of dynamic programming, developed by him somewhat earlier [4]. Two types of engineering problems engendered two different parts of stochastic control theory. Problems of the first type are associated with multistep decision making in discrete time, and are treated in the theory of discrete stochastic dynamic programming. For more on this theory, we note in addition to the work of Howard and Bellman, mentioned above, the books by Derman [8], Mine and Osaki [55], and Dynkin and Yushkevich [12]. Another class of engineering problems which encouraged the development of the theory of stochastic control involves time continuous control of a dynamic system in the presence of random noise. The case where the system is described by a differential equation and the noise is modeled as a time continuous random process is the core of the optimal control theory of diffusion processes. This book deals with this latter theory.