Differential Geometry Of Warped Product Manifolds And Submanifolds

Differential Geometry Of Warped Product Manifolds And Submanifolds
Title Differential Geometry Of Warped Product Manifolds And Submanifolds PDF eBook
Author Bang-yen Chen
Publisher World Scientific
Pages 517
Release 2017-05-29
Genre Mathematics
ISBN 9813208945

Download Differential Geometry Of Warped Product Manifolds And Submanifolds Book in PDF, Epub and Kindle

A warped product manifold is a Riemannian or pseudo-Riemannian manifold whose metric tensor can be decomposed into a Cartesian product of the y geometry and the x geometry — except that the x-part is warped, that is, it is rescaled by a scalar function of the other coordinates y. The notion of warped product manifolds plays very important roles not only in geometry but also in mathematical physics, especially in general relativity. In fact, many basic solutions of the Einstein field equations, including the Schwarzschild solution and the Robertson-Walker models, are warped product manifolds.The first part of this volume provides a self-contained and accessible introduction to the important subject of pseudo-Riemannian manifolds and submanifolds. The second part presents a detailed and up-to-date account on important results of warped product manifolds, including several important spacetimes such as Robertson-Walker's and Schwarzschild's.The famous John Nash's embedding theorem published in 1956 implies that every warped product manifold can be realized as a warped product submanifold in a suitable Euclidean space. The study of warped product submanifolds in various important ambient spaces from an extrinsic point of view was initiated by the author around the beginning of this century.The last part of this volume contains an extensive and comprehensive survey of numerous important results on the geometry of warped product submanifolds done during this century by many geometers.

Geometry of Submanifolds

Geometry of Submanifolds
Title Geometry of Submanifolds PDF eBook
Author Bang-Yen Chen
Publisher Courier Dover Publications
Pages 193
Release 2019-06-12
Genre Mathematics
ISBN 0486832783

Download Geometry of Submanifolds Book in PDF, Epub and Kindle

The first two chapters of this frequently cited reference provide background material in Riemannian geometry and the theory of submanifolds. Subsequent chapters explore minimal submanifolds, submanifolds with parallel mean curvature vector, conformally flat manifolds, and umbilical manifolds. The final chapter discusses geometric inequalities of submanifolds, results in Morse theory and their applications, and total mean curvature of a submanifold. Suitable for graduate students and mathematicians in the area of classical and modern differential geometries, the treatment is largely self-contained. Problems sets conclude each chapter, and an extensive bibliography provides background for students wishing to conduct further research in this area. This new edition includes the author's corrections.

Differential Geometry of Lightlike Submanifolds

Differential Geometry of Lightlike Submanifolds
Title Differential Geometry of Lightlike Submanifolds PDF eBook
Author Krishan L. Duggal
Publisher Springer Science & Business Media
Pages 484
Release 2011-02-02
Genre Mathematics
ISBN 3034602510

Download Differential Geometry of Lightlike Submanifolds Book in PDF, Epub and Kindle

This book presents research on the latest developments in differential geometry of lightlike (degenerate) subspaces. The main focus is on hypersurfaces and a variety of submanifolds of indefinite Kählerian, Sasakian and quaternion Kähler manifolds.

Differential Geometry of Varieties with Degenerate Gauss Maps

Differential Geometry of Varieties with Degenerate Gauss Maps
Title Differential Geometry of Varieties with Degenerate Gauss Maps PDF eBook
Author Maks A. Akivis
Publisher Springer Science & Business Media
Pages 272
Release 2006-04-18
Genre Mathematics
ISBN 0387215115

Download Differential Geometry of Varieties with Degenerate Gauss Maps Book in PDF, Epub and Kindle

This book surveys the differential geometry of varieties with degenerate Gauss maps, using moving frames and exterior differential forms as well as tensor methods. The authors illustrate the structure of varieties with degenerate Gauss maps, determine the singular points and singular varieties, find focal images and construct a classification of the varieties with degenerate Gauss maps.

Geometry of CR-Submanifolds

Geometry of CR-Submanifolds
Title Geometry of CR-Submanifolds PDF eBook
Author Aurel Bejancu
Publisher Springer Science & Business Media
Pages 202
Release 1986-07-31
Genre Mathematics
ISBN 9789027721945

Download Geometry of CR-Submanifolds Book in PDF, Epub and Kindle

Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can us;; Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.

Minimal Submanifolds In Pseudo-riemannian Geometry

Minimal Submanifolds In Pseudo-riemannian Geometry
Title Minimal Submanifolds In Pseudo-riemannian Geometry PDF eBook
Author Henri Anciaux
Publisher World Scientific
Pages 184
Release 2010-11-02
Genre Mathematics
ISBN 981446614X

Download Minimal Submanifolds In Pseudo-riemannian Geometry Book in PDF, Epub and Kindle

Since the foundational work of Lagrange on the differential equation to be satisfied by a minimal surface of the Euclidean space, the theory of minimal submanifolds have undergone considerable developments, involving techniques from related areas, such as the analysis of partial differential equations and complex analysis. On the other hand, the relativity theory has led to the study of pseudo-Riemannian manifolds, which turns out to be the most general framework for the study of minimal submanifolds. However, most of the recent books on the subject still present the theory only in the Riemannian case.For the first time, this book provides a self-contained and accessible introduction to the subject in the general setting of pseudo-Riemannian geometry, only assuming from the reader some basic knowledge about manifold theory. Several classical results, such as the Weierstrass representation formula for minimal surfaces, and the minimizing properties of complex submanifolds, are presented in full generality without sacrificing the clarity of exposition. Finally, a number of very recent results on the subject, including the classification of equivariant minimal hypersurfaces in pseudo-Riemannian space forms and the characterization of minimal Lagrangian surfaces in some pseudo-Kähler manifolds are given.

Introduction to Differential Geometry

Introduction to Differential Geometry
Title Introduction to Differential Geometry PDF eBook
Author Joel W. Robbin
Publisher Springer Nature
Pages 426
Release 2022-01-12
Genre Mathematics
ISBN 3662643405

Download Introduction to Differential Geometry Book in PDF, Epub and Kindle

This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.